|
楼主 |
发表于 2011-10-24 10:48
|
显示全部楼层
仙女座星系,位于仙女星座的一个巨型旋涡星系,视星等为3.5等,肉眼可见。是我们银河系的近邻。视星等为3.5等。肉眼可以见到它,状如暗弱的椭圆小光斑。很早以前天文学家就发现了它,梅西叶在1764年8月3日为它编号。
仙女座星系是距离我们银河系最近的大星系[1]。一般认为银河系的外观与仙女座大星系十分很像,两者共同主宰着本星系群。仙女座大星系弥漫的光线是由数千亿颗恒星成员共同贡献而成的。几颗围绕在仙女座大星系影像旁的亮星,其实是我们银河系里的星星,比起背景物体要近得多了。仙女座大星系又名为M31,因为它是著名的梅西耶星团星云表中的第31号弥漫天体。M31的距离相当远,从它那儿发出的光需要200万年的时间才能到达地球。星云中的恒星可以划分成约20个群落,这意味着它们可能来自仙女座星系“吞噬”的较小星系,
在《梅西耶星表》中的编号是M31,在《星云星团新总表》中的编辑是NGC224,习惯称为仙女座大星云。
仙女座星系的直径是50千秒差距(16万光年),为银河系直径的一倍,是本星系群中最大的一个星系,距离我们大约220万光年。仙女座星系和银河系有很多的相似,对二者的对比研究,能为了解银河系的运动、结构和演化提供重要的线索。
仙女座大星云是秋夜星空中最美丽的天体,也是第一个被证明是河外星系的天体,还是肉眼可以看见的最遥远的天体。它在梅西叶星表中排在第31位,所以简称M31。仙女座大星云实际上是一个非常典型的旋涡星系,当人们尚不知道它是旋涡星系的时候把它与气体星云混淆在一起而取了这个名字,至今人们仍然喜欢这样称呼它。
[编辑本段]发现
1786年,F.W.赫歇耳第一个将它列入能分解为恒星的星云。1924年,哈勃在照相底片上证认出仙女座星系旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统。1944年,巴德又分辨出仙女座星系核心部分的天体,证认出其中的星团和恒星。
M31在天文学史上有着重要的地位。1786年,赫歇耳第一个将它列入能分解为恒星的星云。1924年,哈勃在照相底片上证认出 M31旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统。现代测定它的距离是 670千秒差距(220万光年)。直径是 50千秒差距(16万光年),为银河系的两倍,是本星系群中最大的一个。1944年,巴德又分辨出 M31核心部分的天体,证认出其中的星团和恒星,并指明星族的空间分布与银河系相。M31旋臂上是极端星族I,其中有O-B型星、亮超巨星、OB星协、电离氢区。在星系盘上观测到经典造父变星、新星、红巨星、行星状星云等盘族天体。中心区则有星族Ⅱ造父变星。晕星族成员的球状星团离星系主平面可达30千秒差距以外。近年来还发现,M31成员的重元素含量,从外围向中心逐渐增加。这种现象表明,恒星抛射物质致使星际物质重元素增多的过程,在星系中心区域比外围部分频繁得多。1914年皮斯探知M31有自转运动。1939年以来历经巴布科克等人的研究,测出从中心到边缘的自转速度曲线,并由此得知星系的质量。据目前估计,M31的质量不小于 3.1×1011个太阳质量,比银河系大一倍以上,是本星系群中质量最大的一个。M31的中心有一个类星核心,直径只有25光年,质量相当于107太阳,即一立方秒差距内聚集1500个恒星。类星核心的红外辐射很强,约等于银河系整个核心区的辐射。但那里的射电却只有银心射电的1/20。射电观测指出,中性氢多集中在半径为10千秒差距的宽环带中。氢的含量为总质量的1%,这个比值较之银河系的(1.4~7%)要小。由此可以认为,M31的气体大部分已形成恒星。M31和银河系相似,对二者进行对比研究,就能为了解银河系的运动、结构和演化提供重要的线索。
[编辑本段]详细
由于人类身处银河系,无法观测到银河系的全貌,但天文学家想象银河系也是一个类似于仙女座星系的螺旋星系。仙女座星系、银河系和其他30多个星系共同组成一个更大的星系集团--本星系群(Local Group Galaxy Cluster)。
我们银河系和仙女座星系正在相互靠近对方,在大约30亿年后两者可能会碰撞,在融合过程中将会暂时形成一个明亮、结构复杂的混血星系。一系列恒星将被抛散,星系中大部分游离的气体也将会被压缩产生新的恒星。大约再过几十亿年后,星系的旋臂将会消失,两个螺旋星系将会融合成一个巨大的椭圆星系。
不过,两星系的碰撞、融合只发生在遥不可及的未来,人类大可不必为此“忧天”。
位于仙女座的一个肉眼可见的巨型旋涡星系。在梅西耶星表中编号为31,在《新总表》中编号为224,因此,记为M31或NGC224。又称仙女座大星云,现称仙女星系。1924年,美国天文学家E.P.哈勃首次在仙女星系中发现了一些造父变星,根据造父变星的周光关系算出它的距离,确认它是银河系以外的恒星系统。仙女星系的距离为690千秒差距,或225万光年。同银河系一样,为Sb型。仙女星系的直径约50千秒差距,质量约3.1×1011太阳质量,都为银河系的2倍,是该星系群中最大的一个。仙女星系周围还有几个很小的星系,它们构成该星系群中的一个次群,即仙女星系次群。
位于仙女星座的巨型旋涡星系 (M31)。1950.0历元的天球坐标是赤经0400﹐赤纬+41°00。视星等m 为3.5等。肉眼可见﹐状如暗弱的椭圆小光斑。在照片上呈现为倾角77°的Sb型星系(见星系的分类)﹐大小是160′×40′﹐从亮核伸展出两条细而紧的旋臂﹐范围可达245′×75′。在《梅西耶星表》中的编号是M31﹐《星云星团新总表》中的编号是NGC224﹐习称仙女座大星云﹐现称仙女星系。1786年﹐F.W.赫歇耳第一个将它列入能分解为恒星的星云。1924年﹐哈勃在照相底片上证认出 M31旋臂上的造父变星﹐并根据周光关系算出距离﹐确认它是银河系之外的恒星系统。现代测定它的距离是 670千秒差距(220万光年)。直径是 50千秒差距(16万光年)﹐为银河系的一倍﹐是本星系群中最大的一个。1944年﹐巴德又分辨出 M31核心部分的天体﹐证认出其中的星团和恒星﹐并指明星族的空间分布与银河系相似。M31旋臂上是极端星族I﹐其中有O-B型星(见恒星光谱分类)﹑亮超巨星﹑OB星协﹑电离氢区。在星系盘上观测到经典造父变星﹑新星﹑红巨星﹑行星状星云等盘族天体。中心区则有星族Ⅱ造父变星。晕星族成员的球状星团离星系主平面可达30千秒差距以外。近年来还发现﹐M31成员的重元素含量﹐从外围向中心逐渐增加。这种现象表明﹐恒星抛射物质致使星际物质重元素增多的过程﹐在星系中心区域比外围部分频繁得多。1914年皮斯探知 M31有自转运动。1939年以来历经H.D.巴布科克等人的研究﹐测出从中心到边缘的自转速度曲线﹐并由此得知星系的质量。据目前估计﹐M31的质量不小于 3.1×10个太阳质量﹐比银河系大一倍以上﹐是本星系群中质量最大的一个。
M31的绝对星等M =-21.1﹐是本星系群中最亮的一个成员。从表面亮度分布可知﹐M31中心有一个类星核心﹐绝对星等M =-11﹐直径只有8秒差距(25光年)﹐质量相当于10个太阳﹐即一立方秒差距内聚集1﹐500个恒星。类星核心的红外辐射很强﹐约等于银河系整个核心区的辐射。但那里的射电却只有银心射电的1/20。射电观测指出﹐中性氢多集中在半径为10千秒差距的宽环带中。氢的含量为总质量的1%﹐这个比值较之银河系的(1.4~7%)要小。由此可以认为﹐M31的气体大部分已形成恒星。M31有两个矮伴星系──M32(NGC221)和NGC205﹐按形态分类分别为 E2和E5p。后者拥有大量的年轻蓝星﹐是个特殊的椭圆星系。在本星系群中﹐M31还和其他星系──NGC147﹑NGC185﹑M33(NGC598)以及AndΙ﹐AndⅡ﹐AndⅢ﹐AndⅣ──构成所谓仙女星系次群。
M31和银河系相似﹐对二者进行对比研究﹐就能为了解银河系的运动﹑结构和演化提供重要的线索.
[编辑本段]仙女星系与银河系的碰撞
据英国《卫报》报道,由美国和德国科学家组成的研究小组称,银河系的质量比先前预计的要大50%,旋转速度也要更快,这意味着银河系对其他星系的引力也更大,因而银河系与包括仙女星系在内的其他星系相撞时间可能比科学家所预计的更早。
数十亿年后才会相撞
研究人员表示,银河系一旦与其它星系相遇,碰撞时所产生的超大冲击波将会压缩星系内部的星际气体云团。但幸运的是,这一巨大的灾难只会发生于遥远的未来。德国马普研究院天文学家卡尔-门特恩解释说,碰撞将可能发生于数十亿年之后,虽然两者碰撞的时间比科学家所预测的要早得多,但对于人类来说这一时间仍然是属于遥不可及的未来,不会引起人类的恐慌。
卡尔和他所领导的国际研究团队利用“甚长基线电波干涉阵列”射电望远镜对银河系进行了精确的测量。银河系在旋转的过程中,某些放射无线电波的部分会向地球方向移动。正是基于此现象,科学家们才可以计算出银河系旋转的速度。
科学家们记录了来自银河系4个旋臂所发射出来的无线电波,并根据这些无线电波进行测量。经过测量发现,太阳系会随着银河系以大约100万公里/小时的速度旋转,比预期中的要快近17万公里/小时。卡尔认为,“测量结果要求我们必须要重新认识和理解银河系的结构和运行规律。”太阳系距离银河系中心大约为2.8万光年。仙女座星系大约是太阳质量的2700亿倍,距离我们太阳系有200多万光年。银河系的这种高速旋转意味着它的质量应该与仙女座星系相当,比以前的预测要重三分之一左右。卡尔研究团队成员、美国哈佛大学史密森天文物理学中心科学家马克-里德认为,“从此,我们不再认为银河系只是仙女座星系的小妹妹。”
天文学家们认为,这次碰撞将会在未来的70亿年之内出现。太阳耗尽最后一丝能量之日,差不多也就是两个星系的碰撞之时。在发生碰撞时,恒星和行星应该不会发生碰撞。相反,星系碰撞后会相互融合,形成一个新的更大的星系。英国剑桥大学天文研究所格里-吉莫尔介绍说,“两者会戏剧性搅活、粘合在一起,最后所有恒星都将死亡,新星系变成一个巨大的死亡星系。目前尚不清楚两者是否会正面相撞。”如果是侧向碰撞的话,还将可能会引起进一步的碰撞。整个碰撞过程可能会持续数百万年时间。根据吉莫尔的说法,这项研究不仅仅提前了银河系死亡的时间,而且还对暗物质研究提供了新的依据。研究发现,银河系中心的暗物质比天文学家们早期的预测要冷得多、密得多。
研究人员们还表示,一旦确定了银河系旋转速度,那么最终控制这一速度的复杂公式便可确定银河系中所有暗物质的质量。暗物质是我们肉眼所看不到的,但却是迄今为止宇宙中数量最多的物质。所以,这意味着银河系的质量是天文学家以前估计的1.5倍。美国加州大学洛杉矶分校天体物理学家马克-莫里斯说,最新发现意义重大,但并不是有关银河系大小的最终结论。莫里斯没有参加雷德的这项研究。体积更大还意味着银河系和仙女座之间的引力更加强烈。据雷德介绍,天文学家长期预测的银河系和仙女座星系之间的碰撞可能发生得更早,同时侧面碰撞的可能性更小,然而不用担心,毕竟银河系与仙女座相撞至少是几十亿之后的事了。
碰撞后人类可能不会灭绝 如果银河系果真和其它星系发生碰撞,那时候人类可能会仍然存在,他们将看到一个未来完全不同的天空景象。狭长的银河系将会消失,取而代之的是一个由数十亿颗星球组成的巨大隆起。天文学家们日前绘制了一幅更为详细的银河系三维立体图,发现它的宽度比天文学家以前认为的多15%。更为重要的是,银河系的密度更大,质量比天文学家以前认为的多50%。天文学家1月5日在加州长滩市举行的美国天文学会大会上公布了这一最新发现。
|
|