免费视频|新人指南|投诉删帖|广告合作|地信网APP下载

查看: 570|回复: 2
收起左侧

卷积神经网络表征可视化研究综述

[复制链接]

1

主题

216

铜板

1

好友

实习生

Rank: 1

积分
8
发表于 2022-8-11 12:19 | 显示全部楼层 |阅读模式
转人工智能技术与咨询
源自:自动化学报 作者:司念文 张文林 屈丹 罗向阳 常禾雨 牛铜
摘要
近年来, 深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展, 这些任务多以卷积神经网络为基础搭建识别模型, 训练后的模型拥有优异的自动特征提取和预测性能, 能够为用户提供“输入–输出”形式的端到端解决方案. 然而, 由于分布式的特征编码和越来越复杂的模型结构, 人们始终无法准确理解卷积神经网络模型内部知识表示, 以及促使其做出特定决策的潜在原因. 另一方面, 卷积神经网络模型在一些高风险领域的应用, 也要求对其决策原因进行充分了解, 方能获取用户信任. 因此, 卷积神经网络的可解释性问题逐渐受到关注. 研究人员针对性地提出了一系列用于理解和解释卷积神经网络的方法, 包括事后解释方法和构建自解释的模型等, 这些方法各有侧重和优势, 从多方面对卷积神经网络进行特征分析和决策解释. 表征可视化是其中一种重要的卷积神经网络可解释性方法, 能够对卷积神经网络所学特征及输入–输出之间的相关关系以视觉的方式呈现, 从而快速获取对卷积神经网络内部特征和决策的理解, 具有过程简单和效果直观的特点. 对近年来卷积神经网络表征可视化领域的相关文献进行了综合性回顾, 按照以下几个方面组织内容: 表征可视化研究的提起、相关概念及内容、可视化方法、可视化的效果评估及可视化的应用, 重点关注了表征可视化方法的分类及算法的具体过程. 最后是总结和对该领域仍存在的难点及未来研究趋势进行了展望.
。。。。。
(接上)
4. 可视化的应用
4.1理解与解释模型
表征可视化是理解CNN模型的一种重要途径,在图像领域应用广泛, 常见于图像分类、场景识别等任务的可视化解释. 本文第3节所述的表征可视化方法常用于对基于CNN的图像分类器的解释, 例如, AM方法用于可视化网络对输入图像的偏好, 从另一种角度揭示了网络对何种输入模式的依赖性较强. 注意力掩码能够告诉设计者网络的关注点, 这使其自身具有一定的可解释特性, 因此, 基于注意力掩码的可视化方法不仅可以验证注意力机制自身的有效性, 也常用于观察网络的训练效果.

此外, 表征可视化方法也可以应用在其他类型的数据, 例如, CAM这类方法具有较好的类别区分性, 能够用来确定与特定输出类别相关联的图像区域, 可在视觉问答模型中帮助定位与问题最相关的图像区域. LRP方法在制定反向传播规则时依靠网络的权重与激活值, 而非特征图和通道等图像领域的概念. 因此, 它不仅适应于图像识别任务的解释, 还可以用于可视化机器翻译、语音识别[94]等任务中, 为这些领域的研究者提供了另一种理解模型的途径.
4.2 诊断与优化网络
在CNN学习效果诊断和结构优化上, 基于反卷积的可视化能够观察任意层的神经元的激活, 从而分析CNN的学习率、卷积核尺寸及步长等重要参数的设计是否达到最优. 文献[13]使用基于反卷积的可视化方法对AlexNet内部激活进行分析与改进, 进而提出了ZFNet, 获得了2013年ImageNet数据集图像分类任务冠军. 这种基于表征可视化的针对性分析和诊断方式, 很大程度上避免了盲目的参数调优. 文献[95]利用基于梯度的可视化方法指导单像素的对抗性扰动和对抗性分析, 帮助模型进行对抗性学习. 文献[88]则使用显著性方法检测对抗样本, 避免模型受到对抗攻击. 文献[72]使用Grad-CAM产生的类激活图来观察网络中间层表征, 分析对比不同结构设计对模型训练效果的影响. 此外, CAM这类方法还可用于提供自注意力, 优化CNN的结构设计. 例如, 文献[73]和文献[77]使用Grad-CAM生成自注意力的掩码作为图像蒙版, 用于去除图像中的非重要区域, 并将处理后的图像应用于下阶段的模型训练和推理. 文献[96]将CAM方法集成到图像转换模型的自注意力模块中, 引导模型关注源域与目标域之间的判别性区域, 从而提升图像转换模型对细节的关注能力.
4.3 其他方面
除了对CNN本身的理解与诊断, 可视化方法在其他任务上也有不断拓展与延伸, 例如CAM和Grad-CAM方法在弱监督目标定位任务上取得了非常好的效果. 文献[93]进一步探索了将显著性归因方法产生的显著图作为先验, 应用于弱监督的分割任务上. 在应用领域方面, 可视化方法能够提升对推荐系统决策结果的理解[97], 以及与知识图谱的结合来实现可解释的推荐算法[98]. 对于自动驾驶[99-100]以及智能医疗[101]等领域, 由于这些领域对于决策风险的承受能力较低, 可视化方法对这些领域应用的现实落地至关重要.
5. 存在的难点及发展趋势
5.1 难点分析与趋势展望
近年来, CNN表征可视化相关研究越来越多, 研究者们提出了各种可视化方法, 极大推动了该领域的进展, 但仍存在一些难点问题有待解决, 本节对其进行了归纳, 并分析了未来可能的研究趋势.

1)对于可视化方法, 仍存在噪声、稳定性、解释能力有限等问题.

通过对多种可视化方法的实验比较发现, 多数可视化方法生成的热力图含有一定的噪声, 噪声产生的原因仍没有权威统一的解释. 同时, 面对不同图像时的可视化效果不尽相同, 有些图像可能直接导致可视化方法的失效, 而失效的原因尚不清楚, 仍有待进一步的探究. 此外, 面对复杂背景条件的图像、多目标场景、小目标图像等, 受限于模型本身在面对这些情形时的性能约束, 可视化方法的解释效果并不一定好. 未来可能的研究趋势是将可视化方法与其他解释方法的结合, 从不同侧面不同角度解释模型, 从而缓解单一可视化方法解释效果受限的问题.

2)对于可视化效果的评估, 仍欠缺标准统一的评估方法.

目前很难找到适用于大多数可视化方法的评估标准, 原因在于许多方法的目标并不相同, 也即每种方法对“可解释性”的理解并不相同, 导致各种可视化方法的解释结果差别较大. 同时, 很多可视化方法自身同样缺乏清晰明确的数学与逻辑机理, 导致结果难以量化比较. 如果可以从“可解释性”的概念出发, 统一数个可解释性的标准, 那么对于可视化结果的评估也就有了依据. 同时, 还可以根据可视化方法产生的热力图的特点进行分类评价, 每类热力图使用与之适应的评价标准, 提升其侧重解释某方面的能力.

3)对于可视化的对象, 细粒度的识别模型难以可视化解释.

可视化方法多应用于对图像分类、目标定位及场景识别等任务的解释, 能够实现对多目标图像中语义级目标的区分. 例如,“Cat”和“Dog”虽然同属动物, 但是在语义级上属于明显不同的两种动物. 而单独对于“Cat”这一动物, 实现的不同品种猫的细粒度图像分类, 受限于分类网络自身准确性, 可视化方法很难找到用于区分目标的细节特征, 此时的解释效果非常有限, 甚至对于不同的目标可视化效果始终相同. 与人们的视觉观察及解释能力相差较远. 这一问题或许可以通过视觉解释与语言解释相结合的途径来改善解释效果. 对可视化解释难以描述的细微之处, 辅助加以自然语言描述形式的解释(比如对猫的颜色、猫耳形状的描述), 能够实现更好的解释效果.

4)对于可视化解释的完备性, 现有研究中的解释结果与预测结果无法相互印证.

理论上看, 一个完备可靠的解释可以使用户从中推理并得到被解释的预测结果, 而目前的可视化方法仍不具备这一能力, 仅能从预测结果中得到解释结果, 而无法根据解释来推断出模型的预测, 即两者之间的相互印证关系没有被建立起来. 例如, 如果可视化方法给出了错误的解释, 但这一解释恰好符合用户根据预测结果推测的预期解释, 进而使得用户相信了解释的可靠性, 这将对其形成误导. 此时, 若能根据解释结果推断预测结果, 发现推断出的预测结果和实际预测结果不相符合, 则可通过进一步分析发现其中存在的问题, 从而提升用户对可视化方法的信任.
5.2 学界近年来的关注
近年来, 众多人工智能领域顶级会议关注人工智能和深度学习可解释问题, 其中许多涉及到表征可视化方面的前沿研究, 如[102]:

1) IJCAI 2020 Tutorial on Trustworthiness of Interpretable Machine Learning;

2) CVPR 2020 Tutorial on Interpretable Machine Learning for Computer Vision;

3) ICCV 2019 Workshop on Interpretating and Explaining Visual Artificial Intelligence Models;

4) ICLR 2019 Workshop on Safe Machine Learning;

5) CVPR 2019 Workshop on Explainable AI;

6) AAAI 2019 Workshop on Network Interpretability for Deep Learning;

7) IJCAI 2018/2017 Workshop on Explainable Artificial Intelligence;

8) ICML 2018 Workshop on Human Interpretability in Machine Learning;

9) NIPS 2017 Interpretable Machine Learning Symposium.

表4列举了可解释性深度学习研究领域的部分综述文献, 对各文献的内容侧重作了简要介绍, 其中包含CNN表征可视化的相关内容.

表 4 CNN表征可视化相关的综述文献统计
Table 4 Review literature statistics related to CNN representation visualization
5.3 开源工具
CNN可视化的相关开源工具, 一些研究人员在GitHub等网站开源了多种方法综合的代码包,这对于表征可视化研究及迁移到其他任务使用具有重要价值.

文献[103]对2016年以前的可视化方法作了详细调研和分类整理, 将其中主流方法分为修改输入的方法(如基于扰动的方法)、反卷积类方法和重建输入的方法(如激活最大化方法)三类. 根据这些方法开发了基于MatConvNet框架[112]的CNN可视化工具包FeatureVis, 适用于Matlab平台上的CNN可视化.

Ozbulak[83]发布了一个内容丰富的开源代码包, 实现了10余种可视化方法, 包括梯度方法(如VBP、GAP、Smooth gradient、Integrated gradient等)和类激活映射方法(如Grad-CAM、Score-CAM等). 该源码包基于PyTorch框架, 已经被许多研究人员关注和使用, 受到领域内好评, 目前仍在更新与拓展中.

韩国科学技术院的Kim[113]发布了基于Tensorflow框架的可视化源码包, 该源码包含有梯度类方法、CAM类方法、激活最大化方法等, 配有详细的使用教程, 对各种方法的原理及实现过程的介绍细致, 适合初学者使用.

此外, 佐治亚理工学院的Wang等[114]实现了对CNN网络的交互式可视化, 可对CNN网络各层的卷积、激活和池化操作的数据流向及中间层特征图进行实时展示, 支持交互式的选择输入图像, 实时观察各层的数据流向及表征情况. 虽然该工具更多关注于CNN网络中数据流的走向, 而非解释CNN中间层特征的语义, 但也非常有利于理解CNN的内部表征.
6. 结束语
本文围绕CNN表征可视化研究, 详细梳理了该领域近年来相关的文献, 从基础概念及内容、常见方法的分类与比较、效果的评估及应用等方面进行了详细介绍. 其中, 对常见的可视化方法的分类和介绍是本文的重点内容, 该部分详细分析了各种算法的过程, 归纳了每一类方法的特点, 并对它们的效果进行了比较. 最后, 对该领域仍存在的难点和未来的研究趋势作了总结和展望.

随着表征可视化研究的深入, 人们对CNN的特征学习和预测机制的理解也会更加深刻. 同时, 其他类型的可解释性方法也在不断发展中, 在它们的共同作用下, 不断推动可解释性深度学习的发展. 期待未来实现可理解的、透明的和高效的深度学习方法.
登录中国人工智能培训chinaai查看更多信息

0

主题

2万

铜板

6

好友

资深会员

Rank: 18Rank: 18Rank: 18Rank: 18Rank: 18

积分
3578
发表于 2023-3-15 09:40 | 显示全部楼层
路过支持一下
回复 支持 反对

使用道具 举报

0

主题

4万

铜板

10

好友

钻石会员

Rank: 26Rank: 26Rank: 26Rank: 26Rank: 26Rank: 26Rank: 26

积分
6189
发表于 2024-3-26 15:02 | 显示全部楼层
感谢楼主分享
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

在线客服
快速回复 返回顶部 返回列表