免费视频|新人指南|投诉删帖|广告合作|地信网APP下载

查看: 2269|回复: 1
收起左侧

A combinatorial application of Alexander duality

[复制链接]

2072

主题

100000万

铜板

363

好友

地信专家组

每一次的分离都是为了下一次的相聚

Rank: 14Rank: 14Rank: 14Rank: 14

积分
17622

精华勋章宣传勋章爱心勋章组织勋章地信元老灌水勋章荣誉会员勋章活跃勋章贡献勋章

发表于 2009-11-23 20:39 | 显示全部楼层 |阅读模式
The M¨obius number of a finite partially ordered set equals (up to sign) the
difference between the number of even and odd edge covers of its incomparability
graph. One way to deduce this formula uses Stanley’s combinatorial Alexander
duality theorem for Eulerian posets and Rota’s cross-cut theorem for lattices.
Thereby, the formula may be viewed as a consequence of two theorems from algebraic
topology: Alexander Duality and the Nerve Theorem. We use these theorems
to obtain a refinement that relates the homology of a poset’s order complex to the
cohomology of its incomparability complex, whose simplices are sets of edges of
its incomparability graph that do not cover.

A combinatorial application of Alexander duality.pdf

95 KB, 下载次数: 5

2

主题

7573

铜板

11

好友

高级工程师

Rank: 9Rank: 9Rank: 9

积分
1158
QQ
发表于 2013-1-12 20:01 | 显示全部楼层
什么东西,看看先!

评分

参与人数 1铜板 +1 收起 理由
admin + 1 亲,你好快哦~~~

查看全部评分

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

在线客服
快速回复 返回顶部 返回列表