免费视频|新人指南|投诉删帖|广告合作|地信网APP下载

查看: 2713|回复: 1
收起左侧

[资料] 混合像元分解研究综述——参考文献

[复制链接]

249

主题

1万

铜板

265

好友

资深会员

地质女郎

Rank: 18Rank: 18Rank: 18Rank: 18Rank: 18

积分
3265

荣誉会员勋章

发表于 2010-1-9 01:21 | 显示全部楼层 |阅读模式
参考文献
[1]           Keshava N. and Mustard J.F., Spectral unmixing[J]. IEEE Signal Processing Magazine, 2002. 19(1): 44-57.[2]           Phinn S., Stanford M., Scarth P., Murray A.T., Shyy P.T., Monitoring the composition of urban environments based on the vegetation-impervious surface-soil (VIS) model by subpixel analysis techniques[J]. International Journal of Remote Sensing, 2002. 23(20): 4131-4153.[3]           Small C., Multitemporal analysis of urban reflectance[J]. Remote Sensing of Environment, 2002. 81(2): 427-442.[4]           Kameyama S., Yamagata Y., Nakamura F., Kaneko M., Development of WTI and turbidity estimation model using SMA - application to Kushiro Mire, eastern Hokkaido, Japan[J]. Remote Sensing of Environment, 2001. 77(1): 1-9.[5]           Rogan J., Franklin J., Roberts D.A., A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery[J]. Remote Sensing of Environment, 2002. 80(1): 143-156.[6]           Riano D., Chuvieco E., Ustin S., Zomer R., Dennison P., Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains[J]. Remote Sensing of Environment, 2002. 79(1): 60-71.[7]           Pinet P.C., Shevchenko V.V., Chevrel S.D., Daydou Y. Rosemberg C., Local and regional lunar regolith characteristics at Reiner Gamma Formation: Optical and spectroscopic properties from Clementine and Earth-based data[J]. Journal of Geophysical Research-Planets, 2000. 105(E4): 9457-9475.[8]           Adams J.B., Smith M.O., Gillespie A.R., Simple Models For Complex Natural Surfaces: A Strategy For The Hyperspectral Era Of Remote Sensing[C]. IGARSS'89. 12th Canadian Symposium on Remote Sensing. 1989. 1.[9]           Adams J.B. and Smith M.O., Spectral mixing modeling: A new analysis of rock and soil types at the Viking Lander I site[J]. Journal of Geophysical Research-Atmospheres, 1986. 91: 8089–8112.[10]         Robert D.A., Smith M.O., Adams J.B., Green vegetation,nonphotosynthetic vegetation, and soils in AVIRIS data[J]. Remote Sensing of Environment, 1993. 44: 255-269.[11]         Nash D.B. and Conel J.E., Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite[J]. Journal of Geophysical Research-Atmospheres, 1974. 79: 1615-1621.[12]         Ray T.W. and Murray B.C., Nonlinear spectral mixing in desert vegetation[J]. Remote Sensing of Environment, 1996. 55(1): 59-64.[13]         Zhang L., Tong Q., Zheng L., Study of the spectral mixture model of soil and vegetation in PoYang Lake area, China[J]. International Journal of Remote Sensing, 1998. 19(11): 2077 - 2084.[14]         Chen, X.X. and Vierling L., Spectral mixture analyses of hyperspectral data acquired using a tethered balloon[J]. Remote Sensing of Environment, 2006. 103(3): 338-350.[15]         Somers B., Cools K., Delaieux S., Stuckens J., Van der Zande D., Verstraeten W.W., Coppin P., Nonlinear hyperspectral mixture analysis for tree cover estimates in orchards[J]. Remote Sensing of Environment, 2009. In press. [16]         Ichoku C. and Karnieli A., A review of mixture modeling techniques for sub-pixel land cover estimation[J]. Remote Sensing Reviews, 1996. 13: 161-186.[17]         Marsh S. E., Switzer P., Kowalik W.S., Lyon R.J.P., Resolving the percentage of component terrains within single resolution elements[J]. Photogrammetric Engineering and Remote Sensing, 1980. 46(8): 1079-1086.[18]         Ju J.C., Kolaczyk E.D., Gopal S., Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing[J]. Remote Sensing of Environment, 2003. 84(4): 550-560.[19]         Wang F., Fuzzy classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, , 1990. 28(2): 194-201.[20]         Atkinson P.M., Cutler M.E.J., and Lewis H., Mapping sub-pixel proportional land cover with AVHRR imagery[J]. International Journal of Remote Sensing, 1997. 18(4): 917-935.[21]         Carpenter G.A., Gopal S., Macomber S., Martens S., Woodcock C.E., A Neural Network Method for Mixture Estimation for Vegetation Mapping[J]. Remote Sensing of Environment, 1999. 70(2): 138-152.[22]         Liu W.G., Seto K.C., Wu E.Y., Gopal S., Woodcock C.E., ART-MMAP: A neural network approach to subpixel classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004. 42(9): 1976-1983.[23]         Herzog S.G. and Mustard J.F., Reflectance Spectra of Five-Component Mineral Mixtures: Implications for Mixture Modeling[J]. Lunar and Planetary Science. 1996. 27: 535-536.                     [24]         Green A.A., Berman M., Switzer P., Craig M.D., A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1988. 26(1): 65-74.[25]         Jolliffe I.T., Principal Component Analysis[M]. Berlin: Springer. 2002.[26]         Tompkins S., Mustard J.F., Pieters C.M., Forsyth D.W., Optimization of endmembers for spectral mixture analysis[J]. Remote Sensing of Environment, 1997. 59(3): 472-489.[27]         Elmore A.J., Mustard J.F., Manning S.J., Lobell D.B., Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the Normalized Difference Vegetation Index[J]. Remote Sensing of Environment, 2000. 73(1): 87-102.[28]         Radeloff V.C., Mladenoff D.J., Boyce M.S., Detecting Jack Pine Budworm Defoliation Using Spectral Mixture Analysis: Separating Effects from Determinants[J]. Remote Sensing of Environment, 1999. 69(2): 156-169.[29]         Sabol D.E., Adams J.B., Smith M.O., Quantitative subpixel spectral detection of targets in multispectral images[J]. Journal of Geophysical Research, 1992. 97(E2): 2659– 2672.[30]         Ridd M.K., Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: comparative anatomy for cities[J]. International Journal of Remote Sensing, 1995. 16(12): 2165 - 2185.[31]         Hung M.C. and Ridd M.K., A subpixel classifier for urban land-cover mapping based on a maximum-likelihood approach and expert system rules[J]. Photogrammetric Engineering and Remote Sensing, 2002. 68(11): 1173-1180.[32]         Rashed T., Weeks J.R., Roberts D., Rogan J., Powell R., Measuring the physical composition of urban morphology using multiple endmember spectral mixture models[J]. Photogrammetric Engineering and Remote Sensing, 2003. 69(9): 1011-1020.[33]         Small C., Estimation of urban vegetation abundance by spectral mixture analysis[J]. International Journal of Remote Sensing, 2001. 22(7): 1305-1334.[34]         Stefanov W.L., Ramsey M.S., Christensen P.R., Monitoring urban land cover change: An expert system approach to land cover classification of semiarid to arid urban centers[J]. Remote Sensing of Environment, 2001. 77(2): 173-185.[35]         Wu C.S. and Murray A.T., Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003. 84(4): 493-505.[36].        Boardman J.W., Kruse F.A., Green R.O., Mapping target signatures via partial unmixing of AVIRIS data[C]. Fifth Annual JPL Airborne Earth Science Workshop. Pasadena, CA, 1995, .[37]         Bateson A. and Curtiss B., A method for manual endmember selection and spectral unmixing[J]. Remote Sensing of Environment, 1996. 55(3): p. 229-243.[38]         Dennison P.E. and Roberts D.A., Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE[J]. Remote Sensing of Environment, 2003. 87(2-3): 123-135.[39]         Winter M.E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]. Proceeding SPIE. 1999, 3753, 266.[40]         Neville R.A., Staenz K., Szeredi T., Lefebvre J.,Hauff P., Automatic endmember extraction from hyperspectral data for mineral exploration[C]. International Airborne Remote Sensing Conference and Exhibition, 4th/21st Canadian Symposium on Remote Sensing, Ottawa, Canada. 1999, 891-897[41]    Ifarraguerri A. and Chang C.I., Multispectral and hyperspectral image analysis with convex cones[J]. IEEE Transactions on Geoscience and Remote Sensing. 1999, 37(2): 756-770.[42]         Bowles J., Palmadesso P.J., Antoniades J.A., Baumback M.M., and Rickard L.J., Use of filter vectors in hyperspectral data analysis[C]. Proceeding SPIE. 1995.2553,148.[43]         Plaza A., Martinez P., Perez R., Plaza J., Spatial/spectral endmember extraction by multidimensional morphological operations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002. 40(9): 2025-2041.[44]         Rogge D.M., Rivard B., Zhang J., Sanchez A., Harris J. ,Feng J., Integration of spatial-spectral information for the improved extraction of endmembers[J]. Remote Sensing of Environment, 2007. 110(3): 287-303.[45]         Plaza A., Martinez P., Perez R., Plaza J., A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004. 42(3): 650-663.[46]         Heinz D.C. and Chang C.I., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001. 39(3): 529-545.[47]         Mustard J.F. and Pieters C.M., Abundance and disAirborne tribution of ultramafic microbreccia in Moses rock dike: Quantitative application of mapping spectrometer data[J]. Journal of. Geophysical. Research. 1987. 92: 13619–13634.[48]         Mustard J.F. and Pieters C.M., Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra[J]. Journal of Geophysical Research,1989. 94: 13619–13634.[49]         Roberts D.A., Gardner M., Church R., Ustin S., Scheer G., Green R.O., Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models[J]. Remote Sensing of Environment, 1998. 65(3): 267-279.[50]         Ballantine J.A.C., Okin G.S., Prentiss D.E., Roberts D.A., Mapping North African landforms using continental scale unmixing of MODIS imagery[J]. Remote Sensing of Environment, 2005. 97(4): 470-483.[51]         Powell R.L., Roberts D.A., Dennison P.E., Hess L.L., Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil[J]. Remote Sensing of Environment, 2007. 106(2): 253-267.[52]         Okin G.S., Murray B., Roberts D.A., Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments[J]. Remote Sensing of Environment, 2001. 77(2): 212-225.[53]         Theseira M.A., Thomas G., Sannier C.A.D., An evaluation of spectral mixture modelling applied to a semi-arid environmen[J]t. International Journal of Remote Sensing, 2002. 23(4): 687-700.[54]         Painter T.H., Dozier J., Roberts D.A., Davis R.E., Green R.O., Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data[J]. Remote Sensing of Environment, 2003. 85(1): 64-77.[55]         Bateson C.A., Asner G.P., Wessman C.A., Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000. 38(2): 1083-1094.
[56]         Wu C.S., Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery[J]. Remote Sensing of Environment, 2004. 93(4): 480-492.
[57]         Garcia-Haro F.J., Sommer S., Kemper T., A new tool for variable multiple endmember spectral mixture analysis (VMESMA) [J]. International Journal of Remote Sensing, 2005. 26(10): 2135-2162.
[58]         Asner G.P. and Lobell D.B., A biogeophysical approach for automated SWIR unmixing of soils and vegetation[J]. Remote Sensing of Environment, 2000. 74(1): 99-112.
[59]         Guerschman J.P., Hill M.J., Renzullo L.J., Barrett D.J., Marks A.S., Botha E.J., Estimating fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil in the Australian tropicl savanna region upscaling the EO-1 hyperion and MODIS sensors[J]. Remote Sensing of Environment. 2009. 113: 928-945.
[60]         Song C.H., Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? [J]. Remote Sensing of Environment, 2005. 95(2): 248-263.
[61]         Chen J., Jia X.P., Yang W., Matsushita B., Generalization of Subpixel Analysis for Hyperspectral Data with Flexibility in Spectral Similarity Measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009. In press.
[62]         Binaghi E., Brivio P.A., Ghezzi P., Rampini A., A fuzzy set-based accuracy assessment of soft classification[J]. Pattern Recognition Letters, 1999. 20(9): 935-948.
[63]         Townsend P.A., A Quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications[J]. Remote Sensing of Environment, 2000. 72(3): 253-267.
[64]         Lewis H.G. and Brown M., A generalized confusion matrix for assessing area estimates from remotely sensed data[J]. International Journal of Remote Sensing, 2001. 22(16): 3223-3235.
[65]         Silván-Cárdenas J.L. and Wang L., Sub-pixel confusion-uncertainty matrix for assessing soft classifications[J]. Remote Sensing of Environment. 2008. 112(3): 1081-1095.
锄禾日当午,签到好辛苦!...

1

主题

1710

铜板

0

好友

工程师

相信自己,你就是上帝。

Rank: 7Rank: 7Rank: 7

积分
509
发表于 2010-1-30 13:57 | 显示全部楼层
谢谢,正好受用!
互帮互助,共同进步!
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

在线客服
快速回复 返回顶部 返回列表