基桩检测反射波的非线性小波降噪重建方法

韩晓林 彭岳星 唐新鸣

(东南大学)

(江苏徐州天原建工所)

摘 要 针对现行的基桩完整性检验方法存在的问题,在分析了基桩检测中信号与噪声特征的基础上、采 用非线性小波分析对基桩完整性检测的反射波信号进行降噪处理,为基桩完整性诊断提供了一种有效的降噪分 析方法。并在实际工程测试中取得了较好的效果。

关键词 小波分析 基桩检测 动态诊断 反射波 中图分类号: TU473.1 + 6 文献标识码: A 文章编号: 1000-131X (2001) 06-0105-03

1 引 言

随着高层建筑、高等级公路等工程中灌注桩的广 泛应用,桩身质量越来越引起人们的重视。近年来以 反射波法为代表的基桩小应变动测方法[1] 已成为基桩 完整性检测的主要手段之一。

基桩上部或桩顶附近桩径的变化或桩身局部的材 料不均匀而形成与桩底及缺陷反射等特征在时域耦合 的连续反射和散射噪声。这种噪声给基桩完整性分析 造成很大的困难,严重时会淹没中下部缺陷及桩底反 射信号。造成这种现象的原因是反射波法进行完整性 分析的主要机理是以桩顶在瞬态激励下应力波速度 (反射波) 随时间的变化为依据, 传统的降噪处理多 为时域线性平滑等滤波技术,但时域波技术在降低噪 声的同时也展宽了波形, 平滑了信号中锐变尖峰成 分,而信号中的锐变尖峰成分正是进行基桩完整性诊 断的重要依据。

基桩反射波实质上是一时变非平稳信号,时间和 频率是这类信号两个极为重要的参数、尽管现有的基 桩小应变动测方法能使我们分别从时域(反射波法) 或频域 (机械阻抗法)[1] 观察检测信号, 却不能把二 者结合起来。基桩检测的每一个反射波附近会产生一 组新的频率分量而形成突变,而连续反射和散射噪声 会影响反射波突变的特征和时域定位,严重时会淹没 反射特征。小波分析方法是时频分析最有效的方法之 一,可对含有噪声的信号进行降噪处理和信号恢复并 保留原信号中的突变特征,其中以 D.L. Donoho 提出 的非线性小波分析方法从噪声中恢复信号效果最明 显[2]。

收稿日期: 2000 - 01 - 15, 收到修改稿日期: 2000 - 09 - 20

本文针对现行的基桩完整性检测方法存在的问 题,通过对桩顶在瞬态激励下的应力波速度信号进行 小波分析, 实现了反射波信号的降噪与重建。

2 小波分析方法与信号重建

具有有限能量的函数 f(t) 的小波变换为小波 函数族 $a_{a,b} = \frac{1}{\sqrt{a}} \left(\frac{t-b}{a} \right)$ 为积分核的积分变换

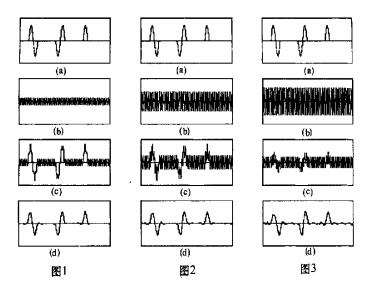
$$W_{\rm f}(a,b) = \int_{a,b}^{+} f(t) \, dt = \int_{a,b}^{+} f(t) \, dt$$

$$\frac{1}{\sqrt{a}} \left(\frac{t - b}{a} \right) dt \quad a > 0 \tag{1}$$

其中 a 是尺度参数 , b 是定位参数 。 f(t) 的连续小 波逆变换或重建为[2]

$$f(t) = \frac{1}{C} \int_{a_{a,b}}^{b_{a,b}} a^{-2} W_f(a,b) = a_{a,b}(t) dadb$$
 (2)

$$C = \int_{-\infty}^{+\infty} \frac{\left(-\frac{1}{2} \right)^{2}}{\left| -\frac{1}{2} \right|^{2}} d < \infty$$


在实际应用中需要对尺度参数 a 和定位参数 b 进 行二进制离散。其离散二进小波函数及相应的变换为

$$a_{m,n}(t) = \frac{1}{\sqrt{a_0^m}} \left(\frac{1 - nb_0 a_0^m}{a_0^m} \right) = a_0^{-m/2} (a_0^{-m} t)^m$$

$$nb_0$$
 < f , m,n > = $f(t)$ m,n (t) d t =

$$a_0^{-m/2}$$
 $f(t) = (a_0^{-m}t - nt_0) dt$ (3)

如果将上式中的时间 t 也离散化,并可以构造出 某些类型的 (t),使得 (t) 为正交小波,即 m,n (t) 满足

则 f(t) 的性质可以用其小波系数进行任意精度的 近似表示,即

$$f(t) = D_{m,n} \quad _{m,n}(t) \tag{5}$$

小波系数 $D_{m,n}$ 由下式求得

$$D_{m,n} = \langle f, m,n \rangle f(t) = f(t) (6)$$

3 基桩反射波信号分析的非线性小波方法

反射波法基桩完整性检测是根据一维波动理论, 考察在近似半正弦波激励在桩身内的传播和反射特征 进行完整性分析,桩顶的理想反射波信号如图 1 (a) 所示。信号中是否出现与"入射波"相似的"反射 波"及该反射波与入射波的相位关系是进行完整性及 缺陷诊断分析的主要依据。反射波采样所获得的数据 通常为如下形式

$$y(t_i) = f(t_i) + z_i, i = 1, 2, ..., n;$$
 (7)

其中 z_i 是加性白噪声; 是噪声强度; t_i 是等间 隔采样点; $n = 2^{J+1}$ 是样本个数。考虑到 f(t) 的性 质可以用其小波系数来刻画,小波系数较大者,携载 的信号能量较多、小波系数较小者携载的信号能量较 少。引入以信号能量为判据的浮动阀值来作为甄别受 到噪声污染的小波系数,随着噪声能量强弱的变化, 阀值也随之上下浮动,如果将小于和等于阀值的小波 系数视为零而舍去,仅仅阀值以上的数据(即小波系 数) 来重建原信号 f(t), 既去掉了大部分噪声,又 不致引起重建结果 f(t) 的明显失真,这就是非线 性小波方法的基本方法。

图 1 (b) 为模拟噪声,图 1 (c) 为图 1 (a) 与 (b) 信号的迭加,即加有噪声的理想反射波信号,可 见噪声对现有的反射波时域分析影响较大, 噪声较大 时会形成无法分析的现象如图 2 (c) 和图 3 (c) 所 示,极易造成误判或漏判。本文采用非线性小波分析 对基桩完整性检测的反射波信号进行降噪处理,实现 了反射波信号与振荡噪声的分离,为基桩完整性诊断 提供了一种有效的分析诊断方法。图 1 (d) 为图 1 (c) 所示含有 20%噪声反射波信号 X(t) 的小波分 析结果,由图 1 (d) 可以看出,X(t) 的小波分析 结果比较准确地反映了信号中的反射波信息。图 2 及 图 3 分别为含有 60 %和 120 %噪声反射波信号 X(t)及其小波分析的结果。由此可见、采用小波分析方 法,选择合适的小波基函数,即可实现对含有较大噪 声的反射波信号进行基桩完整性及缺陷分析。

4 应用实例

图 4 为采用 PDS-3E 型基桩检测仪对某工程桩反 射波实测和分析波形,其中上面一条曲线是实测波 形,含有较明显的噪声;下面一条为经非线性小波降 噪重建后的波形。该波形准确地反映了被测基桩的完 整性特征,在实际分析操作时要注意小波系数阀值的 选取。由此可见,可以采用非线性小波对基桩反射波 信号进行降噪重建。

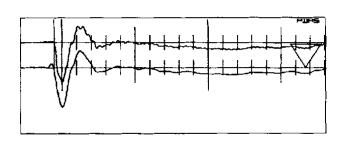


图 4 小波分析实例

参考文献

- 1 汪凤泉主编.基础结构动态诊断.南京:江苏科学技术出版社,1993
- 2 赵松年等.子波变换与子波分析.北京:电子工业出版 社 1996
- 3 张晓平等.从时频分布到连续子波变换.电子科学学刊, 1994.16(6)
- 4 焦李成等.子波理论与应用:进展与展望.电子学报, 1993,21 (7)

DENOISING AND SIGNAL-REBUILDING REFLEX WAVE OF PILE FOUNDATION USING NONLINEAR WAVELET

Han Xiaolin Peng Yuexing

Tang Xinming

(Southeast University)

(Tianyun Construction Engineering Firm)

Abstract

The reflex wave method is popularly adopted in the integrity test of a pile foundation. The repetitive reflection and disperse noise make difficulty to the integrity analysis of a pile foundation. The reflex wave of a pile foundation is really a time-varying unsteady signal. The non-linear wavelet analysis, proposed by D. L. Donoho, is an effective way for denoising and signal-rebuilding. A method of denoising and signal-rebuilding the reflex wave using non-linear wavelet transform is proposed in the paper for the integrity test. The results of practical test show that the proposed method is feasible and effective.

Key Words: wavelet analysis, pile foundation test, dynamic diagnosis, reflex wave

<mark>韩晓林 教</mark>授,主要研究方向:工程振动与动态测试技术。通讯地址:210096 南京东南大学土木工程学院工程力学系

彭岳星 博士研究生。

唐新鸣 高级工程师,主要研究方向:建筑工程领域测试技术。

第十一届全国混凝土及预应力混凝土学术交流会

会议纪要

第十一届全国混凝土及预应力混凝土学术交流会于 2001年8月1日到4日在贵州省贵阳市召开,会议由中国土木工程学会混凝土及预应力混凝土分会负责组织工作,大会共收到论文 100篇。参加交流会的有全国建筑、冶金、铁道、交通、市政、水利等部门的科研、设计、施工和大专院校等代表共222人。中国土木工程学会唐美树秘书长、贵州省建设厅高国富总工程师出席会议并做了讲话。

与会代表的发言充分体现出,近些年混凝土及预应力混凝土在我国有了较大的发展。高强混凝土已大量进入工程应用,如 C60 级泵送免振混凝土在高层建筑施工中的应用,C80 级高强混凝土在高层建筑钢管混凝土柱中获得批量应用,这对节约材料,提高结构性能,创造新型结构都带来了好处。外加剂已成为混凝土中不可缺少的一种组成材料,外加剂不仅用于约水泥,更重要的是改善混凝土性能和改善工艺性能,外加剂的发展十分迅速。钢纤维混凝土的研究正向深度发展,并不断扩大应用范围。近些年,已将纤维增加养料用于纤维混凝土,用于加固混凝土结构。采用纤维增强塑料片材作为新型的加固材料及制造预应力筋,研究和应用发展较快。

我国在混凝土质量控制方面已形成了一整套技术,对保证与提高混凝土质量起着重要的作用。目前,混凝土结构的裂缝控制及混凝土的耐久性问题已引起更多的重视。在重点工程混凝土的耐久性安全性研究,混凝土耐久性设计与评估,新型耐腐蚀材料、新工艺的开发应用方面均取得新进展。

混凝土工程的质量评估与诊治技术可对结构进行安全性评估、耐久性评估,进行结构的加固设计,采用各种加固材料和方法实施加固施工等,都有了很多成功实例和推广应用面。无损检测还开发出很多新技术,如高强混凝土强度检测技术,红外成像检测技术,冲击反射法检测技术,雷达波检测技术,砌筑砂浆和墙体材料检测技术等。

预应力钢材方面,目前已引进和改进低松弛、高强度预应力钢丝、钢绞线生产线 30 余条,高张低松弛钢材已成为我国预应力混凝土的主导钢材。目前在整体结构上施加预应力的技术推广面较大,标志着我国预应力技术进入了一个新的阶段。目前已开发研制成功适于 2000MPa 级钢绞线的夹片式群锚,新产品环氧涂层钢绞线可用于制造斜拉索及体外束,在腐蚀环境下具有较好的应用前景。