磨浮车间的成本控制研究

刘嘉荔

(楚雄矿冶股份有限公司 . 云南 楚雄市 675000)

摘 要: 众所周知 .电耗是选厂磨浮车间生产的最大消耗 .提高台效就能降低电耗 .达到增 效的目的。与此同时,人们也认为磨矿台效的大幅提高,会影响选矿回收率指标。因此, 在提高台效的工作中,人们总是顾虑重重。通过近2年生产指标和成本数据的统计分析, 对台效与电耗、钢耗等之间的关系作了探讨,并得出成本控制的关键是提高设备台效的 结论。

关键词:磨浮车间;设备台效;成本控制

企业追求利益最大化的目标,实质上是追求综 合效益的最大化,也就是说,既要保证工艺技术指标 的全面达标,同时又要在现有基础上提高处理量,但 两者之间是否会相互制约?是不是处理量越大越 好?三者之间在量上有什么样的关系,这就是本文 所要探讨论述的内容。

1 磨矿台效与工艺技术指标的关系

一般来说,在设备既定的条件下,处理量越大, 则入选细度、入选浓度等操作参数就会降低,原则上 对选矿回收率会有影响。但由于生产过程中的影响 因素很多,有些是不可估量的,介于此原因,笔者认 为对生产实际的数据进行统计更为可靠。

2004~2005年每日生产报表的统计结果表明, 在楚雄矿冶的矿石条件下,原则上是原矿品位与工 艺技术指标成正比。

为提高统计结果的可比性和科学性,统计时取 原矿品位相对稳定的数据 (取 1.130% ~ 1.149%), 然后按台效值分段统计,具体统计结果见表 1。

表 1 磨矿台效与生产指标关系

台 效 (t/h)	平均台效 (t/h)	原矿品位 (%)			细度 (-200目,%)
86	82. 65	1. 138	26. 892	90. 302	66. 5
86. 01 ~ 89. 99	88. 06	1. 139	27. 395	90. 301	65. 2
90	93. 48	1. 139	27. 153	90. 561	65. 8
90. 0 ~ 91. 99	90. 89	1. 139	26. 822	90. 461	66. 0
92 0~92 99	92. 49	1. 141	27. 295	90. 908	65. 9
93. 0 ~ 93. 99	94. 08	1. 138	27. 408	90. 586	66. 8
95. 0	97. 95	1. 140	27. 416	90. 548	64. 6

由表 1可见,台效 82.65~97.95 t/h范围内,精

矿品位、回收率和细度的变化都不大。 由此说明 ,在 目前的生产设备及工艺条件下,台效在 100 t/h以 内,对技术指标的影响不明显。基于以上结论,就可 以使接下来的成本分析简单化。

2 磨浮工段成本构成及控制

21 成本构成

磨浮工段的成本主要由 5个部分组成,分别是 材料、动力、工资、福利和其它。其中又以材料的分 类最细,共有 10项,均为日常生产所必须的钢材、药 剂、辅助材料及备件等。从多年的生产消耗情况看, 能源消耗占了总成本的 50%左右,各项材料费占总 成本的 45%左右,其它工资、福利等约占 5%。材料 费中以钢材消耗和备件消耗最大,能源中以电耗 最大。

2 2 实际消耗成本统计

2004年 1月~2005年 12月的生产成本消耗统 计见表 2。

由表 2可见, 2004~2005年度, 选矿总成本达 22. 469元 /t,超过核定成本 1. 169元。根据市场规 律倒算成本的原则,按各项所占实际成本的比例,倒 算出的成本控制数据见表 2最后一列,这列数据清 晰地指出了磨浮生产成本的预算化指标,也是成本 消耗的上限。

不难看出,预算化的成本指标较实际消耗低。 生产管理的目标就是要控制好这些成本数据,使之 达到预算化的指标,从而产生利润。

2.3 成本控制方法

由于成本消耗的构成呈现明显的多样性特点,

控制过程不可能面面俱到,所以控制应遵循 4个原则:一是重点原则;二是及时性原则;三是灵活性原则;四是经济性原则。

表 2 成本消耗统计

成本组成名称	平均单耗(元 /t)	占实际消耗总成 本比例(%)	按比例计算的 2005年 核定项成本 (元/t)
一、材料			
1、钢球	3. 829	17. 009	3. 623
2、钢棒	1. 654	7. 363	1. 568
3、铸锻	0. 468	2 083	0. 444
4、氢氧化钠	0. 092	0. 408	0. 087
5、硫化钠	0. 285	1. 267	0. 270
6、乙黄药	0. 278	1. 237	0. 264
7、浮选油	0. 324	1. 441	0. 307
&,异丁黄药	0. 398	1. 773	0. 378
9、材料	0. 428	1. 904	0. 405
10、备件	2 383	10. 606	2. 259
二、动力			
1、电费	9. 562	42. 554	9. 064
2、水费	1. 202	5. 350	1. 139
三、工资	1. 119	4. 982	1. 061
四、福利费	0. 156	0. 697	0. 148
五、其它	0. 298	1. 324	0. 282
合 计	22. 469	100	21. 300

基于这些原则,成本控制的重点必然是占成本比例最大的项目点。从表 2可看出,磨浮成本控制的重点应是:钢球、钢棒、备件、电费、水费。5项重点中,占成本比例最大的还是能源消耗 - 电耗量占了成本的 42 554%,其次是钢球和备件。

从常识可知,难点在差距最大的项目上,因此, 对实际消耗值与控制目标值作了比较,找出 5个重 点中的难点。计算结果见表 3。

表 3 实际消耗与成本控制目标的差值

比较项目	实际消耗 (元 /t)	控制目标值 (元 /t)	目标 - 实耗 (元 /t)
钢球	3. 829	3. 623	- 0. 199
钢棒	1. 654	1. 568	- 0. 086
备件	2. 383	2. 259	- 0. 124
电费	9. 562	9. 064	- 0. 498
水费	1. 202	1. 139	- 0. 063

表 3的数据显示,降成本的难点在电耗,其次是钢球消耗和备件消耗,最后是钢棒和水费。由于电费占的比例过大,因此在管理控制过程中,只要把电耗量降下来,成本就基本控制住了。

3 台效与主要成本控制因素的关系

3.1 台效与电耗量的关系

人们都知道,电能消耗主要是由装机容量和负荷所决定的。但装机容量只决定启动时的电耗,而在生产过程中,负荷对电耗的影响却很难直接用理论计算出来,为找出两者间的关系,对 2004~2005年两年间的实际电耗与生产台效情况作了进一步统计,统计分析结果表明台效与电单耗量之间的关系值为 0.911 kWh/t,不同台效段的处理量与电耗量之间的关系见图 1。

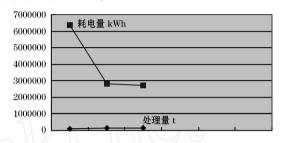


图 1 处理量与耗电量变化趋势

由于统计数据量少,而且处理量与电耗量在数值上相差较大,因此,图 1只能反映出变化的趋势。但从图 1仍然可以看出,随着处理量(台效)的增加,电耗也呈下降趋势。由此,可以认为 0. 911 kWh/t是台效与电耗关系反比的量值。即当台效在 90 t/h以上时,台效的增加,会使电耗呈一定幅度的下降,下降幅度为 0. 911 kWh/t, 照此计算,要降低电耗成本 0. 498元/t(合 1. 423 kWh/t),就应该提高台效 1. 56 t/h。

3.2 台效与钢耗的关系

不同台效段的处理量与钢耗量的计算结果见 图 2。

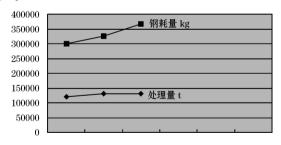


图 2 处理量与钢耗量变化趋势

由统计结果可见,钢耗量随着处理量的上升而呈上升趋势。即当台效在 90 t/h以上时,台效的增加,会使钢耗呈一定幅度的上升,上升幅度为 5. 22 kg/t。照此计算,要降低钢耗成本 0. 285元/t (0.080 kg),就应该降低台效 0.015 t/h。

3 3 台效与其它因素的关系

(下转第 35页)

机构,主要安全生产规章制度和管理规定等。

- (3) 介绍企业内设置的各种警告标志和信号装 置等。
 - (4) 讲解一般救护常识及安全防范知识等。

公司级安全教育由公司安全环保部、人力资源 部负责落实。时间为 4~8 h。讲解应和看图片 .参 观主要生产车间、公司展室等活动结合起来,并应发 一本浅显易懂的规定手册。

3.2 坑 (厂、车间)级安全教育

- (1) 介绍坑 (厂、车间)概况。如主要产品、工 艺流程及其特点,人员结构、安全生产组织状况及活 动情况,劳动保护方面的规章制度和劳动保护用品 的穿戴要求和注意事项,常见事故和典型事故案例 的剖析,单位发展概况等。
- (2) 根据单位特点,介绍必要的安全技术基础 知识。
- (3) 组织新工学习国家相关法律法规,公司、坑 (厂、车间)安全管理规定等。

坑 (厂、车间)级安全教育由单位安全环保股负 责.授课时间一般为8~16课时。

3.3 工区(段)级安全教育

- (1) 介绍工区(段)基本概况。如本工区(段) 的生产特点、作业环境、危险区域、设备状况、发展概 况等。
- (2) 根据单位特点,介绍必要的安全技术基础 知识。
- (3) 组织新工学习公司、坑(厂、车间)安全生 产管理规定,从事工种安全管理规定、岗位安全操作 规程等。

工区(段)级安全教育由工区(段)管理人员及 安全员负责,授课时间一般为 16~24课时。

3.4 班组安全教育

(1) 本班组的生产特点、作业环境、危险区域、

设备状况、消防设施等。重点介绍高温、高压、易燃 易爆、有毒有害、腐蚀、高空作业等方面可能导致发 生事故的危险因素,交待本班组容易出事故的部位 和典型事故案例的剖析。

- (2) 讲解本工种的安全操作规程和岗位责任。 教育新员工时刻重视安全生产,自觉遵守安全操作 规程,不违章作业:爱护和正确使用机器设备和工 具:介绍各种安全活动以及作业环境的安全检查和 交接班制度。告诉新工人出了事故或发现事故隐 患,应及时报告领导,采取措施。
- (3) 讲解如何正确使用爱护劳动保护用品.安 全文明生产的要求,日常安全防范知识和简单自救 常识等。
- (4) 实行安全操作示范。组织重视安全、技术 熟练、富有经验的老工人进行安全操作示范,边示 范、边讲解,重点讲安全操作要领,说明怎样操作是 危险的,怎样操作是安全的,不遵守操作规程将会造 成的严重后果。

班组安全教育由班组长或带班人员负责,授课 时间不得低于 24 h.培训方式多为现场实作培训。

综上所述,有效的安全教育培训形式和方法,完 备的安全教育培训体系,是完成培训任务、保证培训 质量的关键。只有根据本单位的培训任务和目标, 积极改进并创新安全培训形式和方法,就能不断地 提高培训质量和效果,就能促进员工队伍安全素质 的整体提高,就能不断开创安全技能培训工作的新 局面。

参考文献:

- [1] 童一秋. 最新领导干部重大安全事故责任认定与处理全书 [M]. 北京:中国商业出版社, 2001.
- [2] 全国注册安全工程师资格考试辅导教材编审委员会.安全生 产技术、安全生产管理知识 [M]. 北京:中国大百科全书出版 社,2006.

(上接第 32页)

备件、水费因其所占比例很小,在此不做计算过 程的阐述,只作结果说明。据计算,台效与水费成正 比,变动值为 0.0033 m³/t(合 0.0026元/t);备件与 台效成反比,变动值为 0.019元/6

4 结 论

提高台效可降低电耗、备件消耗,但同时又会增 加钢耗和水耗,以 2004~2005年平均台效为基准, 设备小时台效每提高 1.56 t,综合效益为 0.476 元/t

换句话说,就是在目前的设备条件下,只要保持 正常的生产秩序,选矿成本是可以控制的,而控制的 重点在电耗和钢耗上,通过统计分析和计算,当台效 每提高 1.56 t/h时,综合效益可达到 0.476元/t,且 此时的选矿回收率不会受到太大的影响,因此,生产 实践中,应尽量提高台效至 96.45 t/h以上,以取得 较好的利润效果。