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Since [A]° + [B]° = ΣAB, we can also express 
this as:

 
− +
− ° + °

=+ −

+ −

− ++ −
k A k B
k A k B

e k k[ ] [ ]
[ ] [ ]

( )τ τ τ  (5.38)

Thus in the general case, the concentrations 
of A and B will depend on their initial con-
centrations (see Example 5.3). However, for 
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The concentration at some time τ, [A]τ, is 
obtained by integrating 5.37:
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which yields:

Example 5.3 Racemization of amino acids

Amino acids are nitrogen-containg organic molecules that are essential to life. The chemical properties 
of amino acids depend not only on their composition, but also on their structure. Twenty different amino 
acids are used in building proteins. Amino acids come in two forms, which can be distinguished by the 
direction in which they rotate polarized light. Interestingly enough, organisms synthesize only the form 
that rotates polarized light in a counterclockwise manner, labeled the L-form (Figure 5.5a). After death 
of the organism, however, the amino acid can spontaneously convert to its mirror image, the D-form 
(Figure 5.5b), corresponding to clockwise rotation of light. This process is termed racemization. Racemi-
zation is a first-order reaction, and rate constants for this process have been determined for a number of 
amino acids in various substances. This provides a means of dating sediment. Given that the rate constant 
k+ for the l-isoleucine → d-allosioleucine is 9.6 × 10−7 y−1 and for the d-allosioleucine → l-isoleucine is 
9.6 × 10−8 y−1, what is the age of a sediment whose d-alloisoleucine/l-isoleucine ratio is 0.1? Assmme that 
the total isoleucine is conserved and an initial d-isoleucine concentration of 0.

Answer: This is a special case of eqn 5.38 where [B]° is 0 and [A] + [B] = [A]°. Letting γ be the 
ratio [B]/[A] (d-allosileucine/l-isoleucine) and substituting into 5.38, we obtain:
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1
Substituting values and solving for t, we find the age is 8.27 × 103 yr. Of course. racemization 
rates, like all reaction rates, depend on temperature, so this result assumes constant temperature.

Figure 5.5 Structure of L-isoleucine and D-alloisoleucine. Solid wedge shapes indicate bonds 
coming out of the plane of the paper, hashed wedge shapes indicate bonds behind the paper.
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any case. The importance of this point is that 
it holds for overall reactions as well as ele-
mentary ones. For example, consider the ser-
pentinization of olivine:

2 22 4 2

3 2 5 4
2

Mg SiO H O H

Mg Si O OH Mg

+ +
+

+

+! ( )

This is not an elementary reaction as several 
intermediate steps are involved, as in the 
example of the weathering of anorthite dis-
cussed earlier. Nevertheless, if olivine, serpen-
tine and water can be assumed to be pure 
phases and have unit activity, the equilibrium 
constant for this reaction is:

 K
Mg
H

app =
+

+
[ ]
[ ]

2

2  (5.42)

The relation between the forward and reverse 
reaction rate constants must be:

k k–[ ] [ ]Mg H2 2+
+

+=

Suppose that experiments show that the rate 
law for the forward reaction is:

d
dt

k Ol
[ ]

[ ][ ]
Mg

H
2+

+=

where [Ol] is the specific area (area per solu-
tion volume) of olivine in the experiment. 
From eqn. 5.7, we can express the rate for the 
reverse reaction as:

d Ol
dt

d
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[ ][ ]= − = −
+

+2
2Mg

H

Using eqn. 5.41 to obtain a substitution for 
k, we find that the rate law for the reverse 
reaction, i.e., for the formation of olivine 
from serpentine, must be:
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 (5.43)

where k’ is the rate constant for the reverse 
reaction.

τ = ∞, or as a practical matter when τ Ԡ 
(k+ + k−), then a steady state will be achieved 
where eqn. 5.38 reduces to:

 k A k B+ ∞ − ∞=[ ] [ ]  (5.39)

5.3 RELATIONSHIPS BETWEEN 
KINETICS AND THERMODYNAMICS

5.3.1 Principle of detailed balancing

Equation 5.39 describes the relation between 
the concentration of reactant and product of 
a reversible reaction after infinite time (i.e., in 
the steady state). This then is just the state the 
reaction will obtain in the absence of con-
straints and external disturbance. This is pre-
cisely the definition of equilibrium we decided 
upon in Chapter 2. It follows that [A]∞ and 
[B]∞ are also the equilibrium concentrations. 
Thus we see, as we stated in Chapter 2, that 
equilibrium is not necessarily a static state on 
the microscopic scale. Rather, it is a steady 
state where the forward rate of reaction is 
equal to the reverse rate. Formally, we may 
say that for an elementary reaction such as:

 A B!

at equilibrium the following relation must hold:

 k k+ = −[ ] [ ]A Beq eq  (5.40)

where k+ and k− are the rate constants for the 
forward and reverse reactions respectively. 
This is known as the principle of detailed 
balancing, and it establishes an essential link 
between thermodynamics and kinetics. This 
link is apparent when we combine eqn. 5.40 
with eqn. 3.85 to obtain:

 
k
k

B
A

eq

eq

app+

−
= =

[ ]
[ ]

K  (5.41)

It is apparent from eqn. 5.41 that if the 
equilibrium constant and one of the rate con-
stants for a reaction are known, the rate con-
stant for the reverse reaction may be deduced. 
Furthermore, if the form of the rate law for 
either the forward or reverse reaction is 
known, the other can be deduced. This is a 
trivial point for elementary reactions since rate 
laws for such reactions are readily obtained in 
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5.3.2 Enthalpy and activation energy

The principle of detailed balancing allows us 
to relate the activation energy in the Arrhen-
ius relation (eqn. 5.22) to the heat (enthalpy) 
of reaction. Recall that the equilibrium con-
stant is related to free energy change of reac-
tion as:

 K = = =− − + −e e e eG RT H RT S R S R H RTr
o

r
o

r
o∆ ∆ ∆ ∆ ∆/ / / / /  
(5.44)

(For simplicity and clarity, here, and in the 
subsequent discussion of transition state 
theory, we assume ideal behavior, and there-
fore that activities equal concentrations and 
that Kapp = K.) If we write the Arrhenius rela-
tions for the forward and reverse reactions 
and combine them with eqn. 5.41 we obtain:

k
k

A e
A e
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e
E RT

E RT
E E RT+
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+
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−
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− −= = =
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−
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/
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Comparing equations 5.44 and 5.45, we can 
see that:

and E E Hr
o

+ −− = ∆  (5.46)

This relationship is illustrated for the example 
of an exothermic reaction in Figure 5.6. In the 
process of converting products to reactants, an 
amount of energy ΔH is released. To reach that 
state, however, an energy barrier of EB+ must 
be overcome. It is apparent then that the 
enthalpy change of reaction is just the differ-
ence between the barrier energies of the forward 
and reverse reactions. We also see that:

 
A
A

e S R+

−
= ∆ /  (5.47)

Figure 5.6 The relationship between enthalpy 
of reaction and the barrier energy for the 
forward and reverse reactions.
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Indeed, it can be shown that Arrhenius coef-
ficient, or frequency factor, is related to 
entropy as:

 A
T
h

e S R
+ = +

k ∆ * /  (5.48)

where ∆S+
*is the entropy difference between 

the initial state and the activated state (dis-
cussed below) and h is Planck’s constant. The 
ratio kT/h has units of time−1 and is called the 
fundamental frequency. At 298 K, it has a 
value of 6.21 × 1012 sec−1.

5.3.3 Aspects of transition state theory

In the above discussion, we have already 
made implicit use of transition state theory. 
Transition state theory postulates that an ele-
mentary reaction such as:

 A BC AC B+ → +  (5.49)

proceeds through the formation of an acti-
vated complex ABC*, also called a reactive 
intermediate. Thus reaction 5.49 can be 
described by the mechanism:

 A BC ABC+ → *  (5.50)

and ABC AC B* → +  (5.51)

The activated complex ABC* is assumed to be 
in thermodynamic equilibrium with both 
reactants and products. Hence it is possible to 
define an equilibrium constant for reaction 
5.50 (assuming ideal behavior) as:

 K
ABC
A BC

*
*[ ]

[ ][ ]
=

as well as a free energy change:

∆G RT* *ln= − K

and enthalpy and entropy changes:

∆ ∆ ∆G H T S* * *= −
Though to do so here would take us too 

far afield, it can be shown from a statistical 
mechanical approach that the rate constant 
for 5.50 is:

 k
T
h

= κ k
K*  (5.52)
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where kT/h is the fundamental frequency as 
we defined it above, and κ is a constant, called 
the transmission coefficient, whose value is 
often close to 1. Equation 5.52 is known as 
the Eyring Equation.* It is then easily shown 
that the rate constant is:

k
T
h

e e
T
h

eS R H RT G RT= =− −k k∆ ∆ ∆* * */ / /  (5.53)

* Named for Henry Eyring (1901–1981) who formulated transition state theory in 1935. It was evidently an idea 
whose time had come, because M.G. Evans and M. Polanyi independently developed the same theory in a paper 
published the same year. Eyring, who was born in Juarez, Mexico, received his PhD from the University of 
California at Berkeley in 1929. He worked in the University of Wisconsin, the Kaiser Wilhelm Institut in Berlin 
(working with Polanyi) and Princeton University before becoming professor of chemistry at the University of Utah 
in 1946, where he remained for the rest of his life.

Thus if the nature of the activated complex is 
understood, the rate constant can be calcu-
lated. For example, we saw that the partition 
function is related to entropy and energy (it 
is also easily shown that is related to Gibbs 
free energy and enthalpy as well). The rate 
constant can be calculated from partition 
functions of the activated complex and reac-
tants (see Example 5.4).

Example 5.4 Estimating ΔG* for the aragonite-calcite transition

Aragonite is the high-pressure form of CaCO3. Upon heating at 1 atm, it will spontaneously revert 
to calcite. Carlson (1980) heated aragonite crystals containing calcite nuclei to a series of tempera-
tures for fixed times on the heating stage of a microscope, then measured the growth of the calcite 
nuclei and from that calculated growth rates shown in the adjacent table. Using these data, datermine 
the value of ΔG* for this reaction.

Answer: This is a reversible raction, so we have to consider that both the forward and reverse of 
the aragonite → calcite reaction will occur. According to transition state theory, the rate constant 
for the forward reaction is

 k
T
h

e G RT
+

−= k ∆ * /  (5.53)

From eqn. 5.58, the the rate of the net reaction is:

ℜ = −−
net

G G RTT
h

e e
RTk ∆ ∆*/

( )/1

This rate experssion has units of time−1, but Carlson’s results are given in units of distance/time. 
How do we reconcile these? We might guess in this case that fundamental frequency, the pre-
exponential term, ought to be multiplied by some sort of fundamental distance. A fundamental 

Aragonite to calcite transition rates

T °C R (m/sec)

455 7.45 × 10−09

435 3.36 × 10−09

415 1.61 × 10−09

395 6.24 × 10−10

372 2.72 × 10−10
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distance in this case would be lattice spacing, which for aragonite is about 5 Å (or 5 × 10−10 m). 
Thus if λ is the lattice spacing, we have

ℜ = −−
net

G G RTT
h

e e
RTλk

m/s∆ ∆*/
( )/1

Solving for ΔG*:

∆ ∆G RT
T

h
enet

G RT* /[ln ln ln( )]= − ℜ − − −λk
1

To determine ΔG*, we have to calculate ΔG, which we can do using the thermodynamic data in Table 
2.2 and eqn. 2.134. Our spreadsheet is shown below. Calculating the average ΔG* for the 4 meas-
urements, we find ΔG* = 161 KJ. We can then use ΔG* to predict the raction rates. A comparison 
between the measured and predicated reaction rates is shown in Figure 5.7.

Figure 5.7 Comparison of observed and predicted rates of the aragonite→calcite reaction. 
Data (circles) from Carlson (1980).
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T °C R m/sec ln R T, K ΔG, J ln (1-exp(ΔG/RT) ) ln(λkT/h) ΔG* kJ -ln Rcalc

455 7.45E-09 18.7152 728 −2828.8 −0.985 8.933 161.38 18.6485
435 3.63E-09 19.4352 708 −2709.3 −0.997 8.906 160.95 19.4397
415 1.61E-09 20.2452 688 −2592 −1.010 8.877 160.80 20.2756
395 6.24E-10 21.1952 668 −2476.6 −1.022 8.847 161.17 21.1605
375 2.72E-10 22.0252 648 −2363 −1.035 8.817 160.58 22.0986

ΔG* 160.98 ave
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1981b). Equation 5.58 links kinetics and ther-
modynamics and forms the basis of irrevers-
ible thermodynamics.

If the system is not far from equilibrium, 
then ΔG ԟ RT and we may approximate ex 
by 1 + x, so that for an elementary reaction:

 ℜ ≈ − ℜ+
net

G
RT

∆  (5.59)

Thus close to equilibrium, the reaction rate 
will vary linearly with ΔG, slowing as equilib-
rium is approached. Substituting Ar for −ΔG, 
eqn. 5.59 can also be written as:

 ℜ ≈ ℜ+
net

rA
RT

 (5.60)

At this point, you might think, “this is all 
fine and good, but how do I calculate ΔG?” 
There are several approaches to estimating 
the value of ΔG under non-equilibrium condi-
tions. For the first method, let’s return to the 
relationship between activities, ΔG°, and K. 
In Chapter 3, we found we could express the 
relationship between chemical potential and 
activities at equilibrium as:

 ν µ ν
i i

o

i

i
i

RT a i∑ ∏+ =ln 0  (3.84)

At equilibrium, the first term on the left is 
ΔG° and the second term is RT ln K. Under 
non-equilibrium conditions, however, the 
product of activities will not be equal to K 
and eqn. 3.84 will not be equal to 0. Rather, 
it will have some finite value, which is ΔG. 
We define a quantity Q as:

 Q ai
i

i≡ ∏ ν  (5.61)

Q is called the reaction quotient (Chapter 3). 
Though eqn. 5.61 has the same form as our 
definition of the equilibrium constant (eqn. 
3.85) ), there is an important difference. K 
defines the relationship between activities at 
equilibrium. In defining Q, we impose no 
such condition, so that Q is simply the product 
of activities. At equilibrium Q = K, but not 
otherwise. Under non-equilibrium conditions, 
we can express eqn. 3.86 as:

 ∆ ∆G RT Q G° + =ln  (5.62)

Now consider that reaction 5.49 is revers-
ible so that:

 A BC AC B+ +!

and that the reverse reaction proceeds through 
the same activated complex ABC*.

The net rate of reaction is:

 ℜ = ℜ − ℜ+ −net  (5.54)

If ΔG is the free energy difference between 
product and reactant, then the free energy 
difference between the product and the acti-
vated complex must be ΔG−ΔG*. From this it 
is readily shown (Problem 3) that the ratio of 
the forward and reverse reaction rates is:

 
ℜ
ℜ

=+

−

−e G RT∆ /  (5.55)

where ΔG is the actual free energy difference 
between products and reactants. The negative 
of ΔG in this context is often called the affinity 
of reaction, reaction affinity, or simply affinity, 
and is designated Ar (for clarity, however, we 
shall continue to designate this quantity as 
ΔG). Substituting 5.55 into 5.54 and rearrang-
ing, we have:

 ℜ = ℜ −+net
G RTe( / )1 ∆  (5.56)

If the forward reaction is an elementary one, 
then ℜ+ will be:

 ℜ =+ +k [ ][ ]A BC

where k will be as defined in 5.22.
It must be emphasized that equations 5.55 

and 5.56 apply to elementary reactions only. 
However, a similar equation may be written 
for overall reactions:

 ℜ = ℜ −+net
n G RTe( )/1 ∆  (5.57)

where n can be any real number. Using the 
Arrhenius expression for k (eqn. 5.22), eqn. 
5.57 becomes:

 ℜ = −+
− +

net
E RT n G RT n nA e e A BA A B/ /( )[ ] [ ]1 ∆ …  

(5.58)

where [A], [B], . . . are the concentrations 
(surface areas for solids) of the reactants and 
the n’s can be any real number (Lasaga, 
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constant (i.e., independent of temperature), so 
that eqn. 5.65 simplifies to:

 A G T Sr = − =∆ ∆ ∆  (5.66)

where ΔT = (T − Teq) and is sometimes called 
the temperature overstep (see Example 5.5). 
This may be substituted into eqn. 5.59, so 
that close to equilibrium we have

 ℜ =
−ℜ −+

net
eq

eq

S T T
RT

2 ∆ ( )
 (5.67)

Wood and Walther (1983) used this equa-
tion to analyze experimental reaction rate 
studies of a variety of silicate–aqueous fluid 
reactions. They found that essentially all the 
experimental data could be fit to this equation 
if ℜ+ is given by:

 ℜ = −+ kA

where A is the surface area of the solid phase 
and k is the rate constant. Furthermore, the 
temperature dependence of the rate constant 
could be expressed as:

 log .k T= − −2900 6 85/  (5.68)

This is illustrated in Figure 5.8. The data show 
a scatter of more than 1 order of magnitude 
about the line, so clearly the equation cannot 
be used for exact prediction of reaction rates. 

Since ΔG° is equal to −RT ln K, eqn. 5.62 can 
be written as:

RT Q RT G
Q
K

e G RTln ln : /− = =K or∆ ∆

(5.63)

Substituting 5.63 into 5.56, we have for an 
elementary reaction:

 ℜ = ℜ −



+net

Q
1

K
 (5.64)

Thus we expect reaction rates to decrease as 
Q → K.

To arrive at the second method of estimat-
ing ΔG, we recall that ΔG may be written as 
ΔH − TΔS. At equilibrium:

 ∆ ∆ ∆G H T Seq eq eq eq= − = 0

where the subscript eq denotes the quantity 
when products and reactants are at equilib-
rium. Under non-equilibrium conditions, 
ΔH − TΔS will have some finite value. We can 
make use of this and write:

∆ ∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

G H T S H T S

H H T S T S
eq eq eq

eq eq eq

=
=

– – ( – )

– – ( – )
 (5.65)

For temperatures close to the equilibrium 
temperature, ΔH and ΔS may be considered 

Figure 5.8 Log of the rate constant vs. inverse of temperature for a variety of silicate and aluminate 
dissolution reactions. Wood and Walther (1983) extracted reaction rate data from both studies of the 
rates of mineral dissolutions (labeled “Dissolution”) and phase equilibria studies (labeled “Phase 
Equilibria Studies”). Notice that the rate constant has units of mole of oxygen per cc per second. 
From Wood and Walther (1983). Reprinted with permission from AAAS.
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Example 5.5 Predicting rates of reversible metamorphic reactions

Consider the reaction:

Ca Mg Si O OH CaMg CO Mg SiO CaCO CO H O2 5 8 22 3 2 2 4 3 2 211 8 13 9( ) ( )+ + + +!
Tremolite + 11 dolomite ! 8 forsterite + 13 calcite + 9CO2 + H2O

Assume T = 625°C, ΔSr = 1.140 kJ/K, EA = 579 kJ, A = 1.54 × 1027 sec−1 (Heinrich et al., 1989), an 
overstep of the equilibrium temperature of 5°C, and that the dolomite crystals are perfect cubes, i.e., 
VDo = (SDo)2/3 where VDo and SDo are the volume and surface area respectively of dolomite. Assume 
further that the initial assemblage contains only tremolite plus dolomite and that the reaction rate 
can be expressed as in eqn. 5.58, i.e.:

− = −( )dV V
dt

k e S SDo Do G RT
Do Do

/
//0

01 ∆

where VDo0 and SDo0 are the initial dolomite volume and surface areas respectively and k is the rate 
constant with the usual Arrhenius temperature dependence (the minus sign occurs because dolomite 
is a reactant). Calculate the extent of conversion of dolomite (i.e., volume relative to initial volume 
V0) as a function of time.

Answer: To solve this problem, we need to integrate the equation above. First, we substitute eqn. 
5.22 for k and ( ) /V VDo/ 0

2 3 for S SDo Do/ 0. Upon integration, we obtain:

V
V

A
e e tDo

Do

E RT G RTA

0

1
3

1
3

= − −( )





− / /∆

Making use of −ΔTΔS ≈ ΔG (where ΔT is the temperature overstep; eqn. 5.66), we have:

V
V

A
e e tDo

Do

E RT T S RTA

0

1
3

1
3

= − −( )





− / /∆ ∆

The result is shown in Figure 5.9. On geological time-scales, this reaction is clearly quite fast, going 
to completion within half a year (1.5 × 107 sec), even with a relatively small temperature overstep 
of 5°C. We also see in Figure 5.9 that the rate of reaction decreases as time progresses. This occurs 
because of the decreasing dolomite surface area.

The temperature conditions we chose for this example, a constant 5°C overstep, are not geologi-
cally realistic. A more realistic assumption would be that of steady temperature increase, such as 
would occur around an igneous intrusion or as a result of burial or underthrusting. That situation 
is addressed in Problem 8 at the end of this chapter.

Figure 5.9 Relative volume of dolomite as a function of time predicted at 625°C.
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diffusion coefficient must be empirically deter-
mined and will depend upon the nature of the 
diffusing species, the material properties of the 
system in which diffusion is taking place and, 
as usual, temperature.

Strictly speaking, eqn. 5.69 is applicable to 
diffusion in only one dimension, and in our 
brief treatment here, we will consider only the 
one-dimensional case. A more general expres-
sion of Fick’s First Law, applicable in three-
dimensional space is:

 J c= − ∇D
#

 (5.70)

where c is∇ ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

:
$
c

c
x

c
y

c
z

x y z

and x, y, and z are unit vectors in the respective 
directions. In many cases, a three-dimensional 
case can be reduced to a one-dimensional one 
by choosing our x-direction to be the direction 
of the concentration gradient or by assuming 
that diffusion is radial. However, many materi-
als, and in particular most minerals, are aniso-
tropic so that diffusion will proceed more 
rapidly in one direction than in others (this 
effect can be as large as several orders of mag-
nitude). In that case, eqn. 5.70 becomes:

 J D= − × ∇C  (5.70a)

where D is a tensor represented by symmetric 
3×3 matrix:

 D
D D D
D D D
D D D

=












11 12 13

12 22 23

13 23 33

Now let’s consider how concentration will 
change with time as a consequence of diffu-
sion. Imagine a volume enclosed in a cube of 
dimension dx (Figure 5.10). Further imagine 
a diffusion flux of a species of interest through 
the plane and into the volume at x and a flux 
out of the volume through the plane at x+dx. 
Suppose nx atoms per second pass through the 
plane at x and nx+dx atoms per second pass 
through the plane at x+dx. The fluxes at the 
two planes are thus Jx = nx/dx2-sec and 
Jx+dx = nx+dx/dx2-sec. Conservation of mass 
dictates that the increase in the number of 

As Kerrick et al. (1991) pointed out, this 
approach has limits and cannot be applied to 
reactions involving carbonates. Nevertheless, 
Wood and Walther’s work provides a useful 
way to estimate the order of magnitude of 
silicate dissolution rates.

5.4 DIFFUSION

We cannot stir geochemical reactions. 
However, nature often provides advection to 
transport components. In nature, the driving 
force of advection is gravity: fluids (including 
the mantle, which behaves as a fluid on geo-
logic time-scales) move upward or downward 
because they are lighter or heavier than their 
surroundings. Just as it does when we stir the 
tea, advection serves to transport reactants 
and therefore speed reactions. However, 
advection is rarely effective on very small 
scales. On these scales, diffusion is usually the 
process responsible for transport of chemical 
components. Except in gases, diffusion is too 
slow to transport components more than a 
few meters (and generally less). Consequently, 
chemical transport generally involves both 
diffusion and advection: advection for large-
scale transport, and diffusion for small-scale 
transport. In this section, we discuss the 
nature of diffusion and develop the tools nec-
essary to treat it. Because advection depends 
on the physical properties of materials 
(density, viscosity), we will not treat it here.

5.4.1 Diffusion flux and Fick’s Laws

Fick’s Law,* or Fick’s First Law, states that at 
steady state, the flux, J, of some species through 
a plane is proportional to the concentration 
gradient normal to that plane:

 J D
c
x

= − ∂
∂

 (5.69)

The minus sign indicates diffusion is toward 
the region of lower concentration. The propor-
tionality coefficient, D, is the diffusion coeffi-
cient. J has units of mass/area-time, e.g., moles/
m2-sec. If concentration is expressed per unit 
volume, as is often preferred in kinetics, the 
diffusion coefficient has units of m2-sec−1. The 

* Named for Adolf Fick (1829–1901). Fick was born in Kassel, Germany, and earned an MD from the University 
of Marburg in 1851. Fisk’s interest in diffusion through cell membranes led him to formulate the laws that bear his 
name. It was actually the second law that was published first, in an 1855 paper titled Über Diffusion. Fick 
deduced it by analogy to Fourier’s equation for thermal diffusion.
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5.4.1.1 Solutions to Fick’s Second Law

There is no single solution (i.e., function 
expressing c(t,x) ) for eqn. 5.72; rather, there 
are a number of possible solutions, and the 
solution appropriate to a particular problem 
will depend on the boundary conditions. Let’s 
consider a few of the simpler ones. In all 
cases, we assume that the system is uniform 
in composition in the y and z directions so 
diffusion occurs only in the x direction.

As a first case, consider a thin film of some 
diffusing species sandwiched between layers of 
infinite length having concentration c = 0. This 
might represent a “doped” layer in a diffusion 
experiment in the laboratory. In nature, it 
might represent a thin sedimentary horizon 
enriched in some species such as iridium (such 
as the iridium-enriched layer in many sedi-
ments at the Cretaceous–Tertiary Boundary). 
Diffusion will cause the species to migrate 

atoms, dn, within the volume is just what goes 
in minus what comes out. Over an increment 
of time dt this will be dn = (Jx − Jx+dx)dt. The 
change in the concentration over this time is 
just this change in the number of atoms per 
unit volume:

 dc
J J dt

dx
x x dx= − +( )

and the rate of change of concentration is:

 dc
dt

J J
dx

x dx x= − −+( )

If we specify that we are interested in the 
change in concentration at some fixed point x 
and some fixed time t, in the limit of infinitesi-
mal dt and dx, this equation can be written as:

 
∂
∂





 = − ∂

∂






c
t

J
xx t

 (5.71)

Equation 5.71 is called the equation of conti-
nuity since it follows from mass conservation. 
Now since the flux is given by Fick’s First 
Law, we can write:

 
∂
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Simplifying, we arrive at Fick’s Second Law:

 
∂
∂
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


 = ∂

∂




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c
t

D
c

xx t

2

2  (5.72)

Equation 5.72 tells us that rate of change with 
time of the concentration at any point is pro-
portional to the second differential of the dif-
fusion profile. Fick’s Second Law is illustrated 
in Figure 5.11.

Figure 5.11 Three possible concentration 
gradients. In (a), ∂2c/∂x2 = 0 and therefore 
∂c/∂t = 0. Thus for a gradient that is straight, 
the concentration at any point remains 
constant (even though there is diffusion along 
the gradient). This is therefore the steady-state 
case. In (b), ∂2c/∂x2 > 0 and hence the 
concentration at any point increases with 
time. In (c), ∂2c/∂x2 < 0 and therefore the 
concentration at any point decreases with 
time. Both (b) and (c) will tend, with time, 
toward the steady-state case (a).
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Figure 5.10 A volume of dimension dx with 
fluxes through the planes at x and x+dx.
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Now consider a situation where the diffus-
ing species has an initial uniform concentra-
tion Co between x = 0 and x = −∞, and 0 
concentration between x = 0 and x = ∞. In 
the laboratory, this circumstance might arise 
if we place two experimental charges adjacent 
to one another, one having been “doped” 
with the species of interest. In nature, a some-
what analogous situation might be a layer of 
fresh water overlying a formation brine in an 
aquifer, or river water overlying seawater in 
an estuary, or two adjacent crystals.

The solution to this case may be found by 
imagining the volume between x = 0 and 
x = −∞ as being composed of an infinite 
number of thin films of thickness Δξ (Figure 
5.13). The concentration of the diffusing 
species at some point xp at time t is then the 
sum of the contributions of each imaginary 
thin film (Crank, 1975). The mathematical 
solution is obtained by integrating the contri-
bution of all such films:

 c x t
C
Dt

e do Dt

x
( , )

( ) /
/= −

∞

∫2 1 2
42

π
ξξ  (5.75)

or defining

 
η ξ

π
ηη

=

= −
∞

∫
/ :

( , )
/ /

2

1 2 2

2

Dt

c x t
C

e do

x Dt

 (5.76)

The integral in eqn. 5.76 may be written as:

e d e d e dx
Dt

x
Dt−

∞
−

∞
−∫ ∫ ∫= −η η ηη η η2 2 2

2
0 0

2  (5.77)

away from x = 0 as time passes. Mathemati-
cally, this situation imposes certain boundary 
conditions on the solution of eqn. 5.72. We 
take the position of enriched horizon to be 0, 
and we seek a solution to 5.72 such that at 
t = 0, c = 0 everywhere except x = 0. At some 
time t > 0, our function should have the prop-
erty that c approaches 0 as x approaches infin-
ity. We further require that the total amount of 
the species remain constant:

 M cdx=
−∞

+∞

∫
where M is the total amount of substance in 
a cylinder of unit cross-section and length x.

The solution is given by Crank (1975) as:

 c x t
M
Dt

e x Dt( , )
( ) /

/= −

2 1 2
42

π
 (5.73)

Figure 5.12 shows how the concentration 
profile changes with time under these circum-
stances. It is interesting to note that these 
profiles are the same as those of a “normal” 
statistical distribution error curve with a 
standard deviation σ = (2Dt)1/2.

Suppose a boundary condition is imposed 
such that diffusion can occur only in the posi-
tive direction. We can treat this case as if the 
diffusion in the negative direction is reflected 
at the plane x = 0. The solution is obtained 
by superimposing the solution for the nega-
tive case on the positive one:

 c x t
M

Dt
e x Dt( , )

( ) /
/= −

π 1 2
42

 (5.74)

Figure 5.12 Concentration profiles at three 
different times resulting from outward 
diffusion from a thin film of the diffusing 
species. Note that the area under the curve 
remains constant through time.
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of finite thickness or a compositionally zoned 
crystal (Example 5.6). Again, the layer is 
treated as a series of thin films, but the inte-
gration in eqn. 5.75 is carried out from −h to 
+h. The result is:

c x t
C

erf
h x

Dt
erf

h x
Dt

( , ) = −



 + +



{ }0

2 2 2
(5.81)

5.4.2 The diffusion coefficient and diffusion in 
multicomponent systems

There are two important constraints on diffu-
sion that we have thus far ignored. First, dif-
fusion differs from other kinds of transport in 
that we specify that there is no net transport 
of material across the boundary of interest. If 
there is net transport, we are, by definition, 
dealing with flow or advection rather than 
diffusion. If this constraint is to be satisfied, 
movement of one species through a plane 
must be accompanied by movement of one or 
more other species in the opposite direction.

The second constraint is electrical neutrality. 
Diffusion of even small quantities of an ion 
will quickly lead to the development of a large 
electric potential. The force associated with the 
potential would prevent any further diffusion 
of that ion in that direction. Thus diffusion of 
an ionic species must be coupled with diffusion 
of an equal quantity of charge in the opposite 
direction. In addition to these constraints, we 
must recognize that diffusion in some cases 
will lead to non-ideal mixing and the finite 
enthalpy and volume changes that accompany 
such situations. With this in mind, we can rec-
ognize four classes of situations and four kinds 
of diffusion coefficients:

(1) Tracer, or self-diffusion, in which the net 
mass and charge fluxes associated with 
the diffusing species are sufficiently small 
that they can be safely ignored. There 
may be no significant concentration gra-
dient. This situation occurs when, for 
example, an experimental charge is 
doped with a radioactive isotope in suf-

This integral has the form of a standard math-
ematical function called the error function, 
which is defined as:

 erf x e d
x

( )
/

= −∫2
1 2 0

2

π
ηη  (5.78)

Substituting eqn.5.78 into 5.76, and since 
erf(∞) = 1, eqn. 5.78 becomes:

 c x t
C

erf
x
Dt

o( , ) = − 



{ }2

1
2

 (5.79)

Values for the error function may be found in 
mathematical tables. The error function is 
also a standard function in some spreadsheets 
such as Microsoft Excel™.* Alternatively, it 
may be approximated as:

 erf x x( ) exp( / )≅ − −1 4 2 π  (5.80)

Figure 5.14 shows how the concentration 
profile will appear at different times. Since 
erf(0) = 0, the profiles have the interesting 
property that c = Co/2 at x = 0 at all times.

A similar approach can be used for a dif-
fusing species initially confined to a distinct 
region, for example: −h < x < +h. Examples 
might be sedimentary or metamorphic layers 

* The error function in Excel, ERF(), is an add-in function found among the “analysis tools”. ERF() does not 
properly treat the case where x < 0. The error function has the property that erf(-x) = -erf(x). In working with 
Excel, test for a negative value of x and where x is <0 replace ERF(-X) with –ERF(X). IF functions in Excel have 
the format “IF(logical_test, value_if_true, value_if_false)”. So, for example, use a statement such as 
“=IF(X<0,-ERF(-X),ERF(X))”.

Figure 5.14 Distribution of a diffusing species 
initially confined to −∞ < x < 0 at three time 
intervals after diffusion begins.
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Example 5.6 Diffusion in a crystal

Igneous crystals are often zoned as a result of changes in the composition of the magma. Suppose 
an olivine crystal of 2 mm diameter with a concentration of 2000 ppm Ni suddenly comes into contact 
with a magma in which its equilibrium concentration should be 500 ppm Ni. How long would it 
take for diffusion to homogenize the crystal at a temperature of 1250°C, assuming instantaneous 
equilibration at the crystal–liquid boundary?

Answer: We can treat the olivine crystal as a sphere. Radial symmetry then allows us to consider 
the problem as a function of radius. We need only consider the variation of concentration along one 
radial direction with 0 < x < r. Our boundary condition is that at x = r (the edge of the crystal) 
concentration is held constant by reaction with the liquid. We’ll call this concentration Cr. The initial 
distribution is c = Ci for 0 < x < r. According to Crank (1975), the solution is:

 c C
C C
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and the concentration at x = 0, C0, is:
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 (5.83)

From eqn. 5.69, we see that as the concentration gradient disappears, the rate of diffusion goes to 
0. So the crystal approaches homogeneity only asymptotically, becoming homogenous only at t = ∞, 
but it will become essentially homogenous more quickly. Essentially homogenous implies we could not 
detect a gradient. If our analytical precision is only 5%, we could not detect a gradient of less than 
5%. So let’s rephrase the question to ask, how long will it take before the concentration gradient is 
less than 5%? We set C0/Cr = 1.05 and substituting into eqn. 5.83 and rearranging, we obtain:

 0 05 1 2 1
2 2

2
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. exp≤ −
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π
 (5.84)

As it turns out, for relatively large values of t (Dt/r2 > 0.1), the summation converges within 0.05% 
after the first term, so that eqn. 5.84 may be approximated by:

 t
r

D C Ci r

≅ −
−





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2

2

0 05
2 1π

ln
.

( / )

For the value of D = 10−12 cm2/sec given by Morioka and Nagasawa (1990), we find that about 154 
years is required before the olivine homogenizes. If the olivine spent less than this time in contact 
with the magma, we would expect it to be zoned in Ni concentration. Figure 5.15 shows how the 
concentration profile of Ni would vary with time.

Figure 5.15 Distribution of Ni in a spherical olivine grain with an initial concentration of 
2000 ppm and a rim concentration fixed at 500 ppm.
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and
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L is called the chemical or phenomeno-
logical coefficient. These equations must 
be used in situations where there is a sig-
nificant change in composition of the 
material through which diffusion is occur-
ring, such as a chemically zoned liquid or 
solid, or across a phase boundary. For 

ficiently small amounts such that the con-
centration of the element, and hence its 
chemical potential, does not vary signifi-
cantly. This is the simplest situation, and 
the one that we have dealt with thus far.

(2) Chemical diffusion refers to non-ideal 
situations where chemical potential 
rather than concentration must be con-
sidered. In this circumstance, Fick’s Laws 
can be rewritten as:

 J L
x

= − ∂
∂
µ  (5.85)

Example 5.7 Equilibration between a mineral grain and pore water

Imagine a grain of calcite in an accumulating sediment surrounded by pore water. Assume that the 
distribution coefficient of Sr between calcite and water is 100, that the calcite has an initial Sr con-
centration of 2000 ppm, that a constant Sr concentration of 10 ppm is maintained in the water, and 
that the grain is spherical. If the diffusion coefficient for Sr in calcite is 10−15 cm2/sec and the radius 
of the calcite grain is 1 mm, how will the average concentration of Sr in the grain change with time?

Answer: This problem is similar to the previous example (Example 5.6). This time, however, we 
want to know the average concentration of the grain. The mass of Sr at time t in a spherical shell 
of thickness dr is:

M t c r t r dr( ) ( , )= 4 2π

The average concentration of Sr in the grain at time t is then obtained by integrating and dividing 
by the volume:

 C t
a

c r t r dr
a

( ) ( , )= ∫1
44

3
3

2

0π
π  (5.86)

where c(r,t) is given by eqn. 5.85 in Example 5.6. The solution is (Albarède, 1995):
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 (5.87)*

where Ci is the initial concentration in the calcite and C0 is the concentration at the edge of the 
crystal, which will be in equilibrium with the pore water. The solution is shown Figure 5.16. The 
grain reaches equilibrium with the pore water within 100,000 to 200,000 years.



KINETICS: THE PACE OF THINGS 185

direction. Under such circumstances, the 
flux of species i is computed as:

 J D
c
x

i i k
k

k

n

= − ∂
∂=

∑ ,

1

 (5.89)

where Dik is the interdiffusion coefficient 
describing the interaction of species i 
and k, and n is the number of compo-
nents in the system. Equation 5.89 is 
known as the Fick-Onsager Law. The 
interdiffusion coefficient is related to the 
tracer diffusion coefficient as:

 D
n D n D

n n
i k

i i k k

i k
, = +

+
 (5.90)

where ni is the mole fraction of i and Di 
is the tracer diffusion coefficient for I 
(see Example 5.8). For i = k, eqn. 5.90 
reduces to Di,I = Di. The complete solu-
tion for diffusion flux in the system is:

 J DC=  (5.91)

where J is the flux vector, D is the diffu-
sion coefficient matrix, or tensor, and C 
is the concentration gradient vector:

example, consider an olivine crystal in 
equilibrium with a surrounding basaltic 
liquid. There would be a significant change 
in the concentration of a species such as 
Mg at the phase boundary, and hence eqn. 
5.69 would predict that, even at equilib-
rium, diffusion of Mg out of the olivine 
and into the liquid should occur, but, of 
course, this will not be the case. However, 
by specifying that the olivine and the 
basalt are in equilibrium, we are specify-
ing that the chemical potential of Mg is 
the same in the olivine and in the melt, 
and thus eqn. 5.85 correctly predicts that 
no diffusion will occur at equilibrium.

(3) Multicomponent diffusion refers to situ-
ations where the concentration of the 
species of interest is sufficiently large that 
its diffusion must be coupled with diffu-
sion of other species in the opposite direc-
tion to maintain electrical neutrality and/
or constant volume. In such a circum-
stance, the diffusion of any one species is 
related to the diffusion of all other 
species. For example, had we considered 
the diffusion of Mg in olivine in Example 
5.6, it would have been necessary to con-
sider the diffusion of Fe in the opposite 

* The summation in eqn. 5.87 is slow if Dt/a2 is small. An alternative solution to eqn. 5.87 is:
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The two solutions give identical results. They differ only in the ease of computation. For large values of Dt/a2 the summation 
in eqn. 5.87 is preferred. For small values of Dt/a2 5.88 is preferred.

Figure 5.16 Change in the bulk concentration of Sr in a 2 mm diameter calcite grain assuming 
an initial concentration of 2000 ppm, a constant concentration in the pore water of 10 ppm and 
a calcite/water distribution coefficient of 100.
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where Ci is ∂ci/∂x (this is the same as eqn. 
5.91, but in matrix notation). Interdiffu-
sion can result in diffusion up a concen-
tration gradient, because as we can see 
from eqn. 5.89, the flux of species i 
depends on the concentration gradients 
of all species, not just its own.

(4) Multicomponent chemical diffusion 
refers to situations where both the chem-
ical potential and the diffusion of other 
species must be considered. In this case, 
the diffusion flux is calculated according 
to equation 5.93, but the diffusion coef-
ficient matrix, D, must be calculated as:

 D LG=  (5.92)

where L is the matrix of phenomenologi-
cal coefficients and the elements of G, the 
thermodynamic matrix, are functions of 
the derivatives of activity with respect to 
concentration. The paper of Liang et al. 
(1997) provides an excellent review of 
the theory, and the experiments of Watson 
(1982) provide a good example of the 
complexity and non-intuitive nature of 
multicomponent chemical diffusion. In 
this experiment, a quartz sphere was dis-
solved in molten basalt. All elements 
except SiO2 were diffusing out of the 
basalt into SiO2-rich liquid. Figure 5.17 
shows concentration profiles in which Na 
and K are actually diffusing in the direc-
tion of higher concentration.

Although diffusion is treated differently in 
different circumstances, it is important to 
bear in mind that the mechanism on a micro-
scopic scale is always the same: it results from 
the random motion of atoms or molecules. 
Reference is sometimes made to the “driving 
force” of diffusion, taken either as the con-
centration or chemical potential gradient. 
While it may sometimes be convenient to 
think in terms of “driving forces”, these forces 
are not real.

To demonstrate this point, we can derive 
Fick’s First Law just from a consideration of 

Figure 5.17 Electron microprobe traverses 
across boundary layers of melt in contact with 
dissolving quartz spheres. Quartz is to the left 
at zero microns. Note that K2O and Na2O are 
diffusing “uphill”, that is, toward higher K2O 
and Na2O concentrations in the SiO2-rich 
liquid. From Watson (1982). With kind 
permission of Springer Science+Business Media.
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random atomic motion. Consider two adja-
cent lattice planes in a crystal spaced a  
distance dx apart. Let the number of atoms 
of the element of interest at the first plane be 
n1 and the number of atoms at the second be 
n2. We assume that atoms can change position 
randomly by jumping to an adjacent plane 
and that this occurs with an average frequency 
ν (i.e., 1 jump of distance dx every 1/ν sec). 
We further assume that there are no external 
forces, so that a jump in any direction has 
equal probability. At the first plane there will 
be νn1/6 atoms that jump to the second plane 
(we divide by 6 because there are 6 possible 
jump directions: up, down, back, front, right, 
left). At the second plane there will be νn2/6 
atoms that jump to first plane. The net flux 
from the first plane to the second is then:
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ticed. If we could distinguish the atoms, we 
could detect a flux even in the absence of a 
concentration gradient. Other factors, such as 
pressure or stress gradient, presence of an 
electromagnetic field, a temperature gradient, 
or concentration gradients of other species 
may make a jump in one direction more prob-
able than another, as can differences in chemi-
cal potential between the two planes. Such 
“forces” will affect the diffusion flux and 
terms must be added to the diffusion equa-
tions to account for them. The point we are 
stressing here is that diffusion can occur in the 
absence of all such forces.

5.4.3 Diffusion in solids and the temperature 
dependence of the diffusion coefficient

We can imagine four ways in which diffusion 
might take place in solids (Figure 5.18):

(1) Exchange: the interchange of position 
of two atoms in adjacent sites.

(2) Interstitial: in which an atom moves 
from one interstitial site to another.

(3) Interstitialcy: in which an atom is dis-
placed from a lattice site into an intersti-
tial site.

(4) Vacancy: in which an atom moves from 
a lattice site to a vacancy, creating a 
vacancy behind it.

Mechanisms 1 and 3 involve displacement of 
two atoms and therefore have high activation 

 J
n n

dx
n n

dx
= − = −ν ν ν1 2

2
1 2

2

6 6

6
/ / ( )  (5.93)

The concentration, c, is the number of atoms 
of interest per unit volume (i.e., n/dx3), so we 
may substitute cdx3 for the number of atoms 
in eqn. 5.93:

 J
c c dx

dx
c c dx= − = −ν ν

6 6
1 2

3

2 1 2
( )

( )

Letting dc = −(c1 − c2) and multiplying by dx/
dx, we can rewrite this equation as:

 J
dx dc

dx
= − ν 2

6

If we let D = νdx2/6 then we have Fick’s first law:

 J D
dc
dx

= −

Hence D is related to the jump frequency, ν, 
and square of the jump distance (dx).

We see that there is a net diffusion, not 
because of the presence of a force, but only 
because there are more atoms at one point 
than at an adjacent one. In the absence of a 
concentration gradient (i.e., n1 and n2 the 
same), there would be nν/6 atoms moving 
from the first to the second plane and nν/6 
atoms moving from second to the first plane. 
But if we cannot distinguish atoms originally 
at the first plane from those originally at the 
second, these fluxes balance and go unno-

Example 5.8 Interdiffusion coefficients

Calculate the diffusion flux for Mn in a garnet given the interdiffusion coefficient matrix below (in 
cm2/sec) and the concentration gradients of 0.023 mol/cm, −0.009 mol/cm and −0.015 mol/cm for 
Mn2+, Mg2+, and Fe2+, respectively.

Answer: We calculate the diffusion flux for Mn using eqn. 5.89. We find that JMn is 3 × 10−21 mole/
cm2-sec.

Diffusion coefficient matrix for garnet

Mn Mg Fe

Mn 8.38×10−20 −9.91×10−20 −4.68×10−21

Mg −2.78×10−20 7.26×10−21 −8.81×10−23

Fe −7.16×10−20 −4.81×10−23 1.19×10−20

From Dempster (1975).
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vacancies to have a temperature dependence 
of the form of eqn. 5.14, the Boltzmann dis-
tribution law. Thus the number of lattice 
vacancies can be written as:

 N N kevac perm
E RTH= + − /

where k is some constant and EH is an activa-
tion energy needed to create a vacancy or 
“hole”.

The probability, P, of an atom making a 
successful jump to a vacant site is found by 
multiplying the number of attempts, ℵ, by the 
fractions of atoms having sufficient energy to 
get out of the well:

 P =ℵ −e E RTB /  (5.94)

The number of attempts is simply the vibra-
tion rate, ν, times the number of holes:

 ℵ = = +[ ]−ν ν[ ] /N N kevac perm
E RTH  (5.95)

Combining eqns. 5.94 and 5.95 we have:

 P = +− − +ν νN e keperm
E RT E E RTB H B/ ( )/

The diffusion rate should be the number of 
jumps times the distance per jump, d:

ℜ = +− − +ν νdN e dkeperm
E RT E E RTB H B/ ( )/  (5.96)

or

 ℜ = +− − +me neE RT E E RTB H B/ ( )/  (5.97)

where n and m are simply two constants 
replacing the corresponding terms in eqn. 
5.96. Thus diffusion rates generally will have 
a temperature dependence similar to eqn. 5.22. 
At low temperature, the permanent vacancies 
will dominate and the diffusion rate equation 
will look like:

 ℜ ≅ −me E RTB /  (5.98)

At higher temperature where thermally gener-
ated vacancies come into play, the latter term in 
5.97 dominates, and the diffusion rate equation 
will look like:

 ℜ ≅ − +ne E E RTH B( )/  (5.99)

Diffusion that depends on thermally created 
vacancies is sometimes called intrinsic diffusion, 

energies. Since interstitial sites are likely to be 
small, mechanism 2 will apply mainly to small 
atoms (H and He, for example). Thus we are 
left with mechanism four as a principal mech-
anism of diffusion in solids.

Hence, diffusion in solids is a bit like a game 
of checkers: an atom can generally only travel 
by moving from lattice site to lattice site. Fur-
thermore, it can only move to a vacant lattice 
site (and one of the correct type). In general, 
lattice vacancies are of two types: permanent 
and temporary. Permanent vacancies can arise 
from defects or through the presence of impu-
rities, for example through substitution of a 
doubly charged ion for a singly charged one 
with a vacancy providing charge balance. Tem-
porary sites arise from thermal agitation 
causing the volume of the solid to be slightly 
greater than the ideal volume by forcing atoms 
onto the surface. The number of the former is 
temperature-independent while the latter are 
temperature-dependent.

Let’s attempt to calculate a diffusion coef-
ficient ab initio for the simple one-dimensional 
case of tracer diffusion in a solid occurring 
through the vacancy mechanism. Since a 
certain minimum energy is required to get an 
ion out of the lattice site “energy well” we 
would expect the number of the temporary 

Figure 5.18 Four types of diffusion 
mechanisms in solids. After Henderson 
(1986).
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Thus on a plot of ln D versus reciprocal tem-
perature, data for diffusion of a given element 
in a given substance should plot along a line 
with slope EA/R and intercept ln Do (Figure 
5.20). Values for the activation energy are 
generally similar for most elements (typically 
50 to 200 kJ), but the frequency factor varies 
widely. Table 5.2 list frequency factors and 
activation energies for several elements in 
various geological materials.

The pressure dependence of the diffusion 
coefficient is:

 D D eo
E P P V RTA ref= − + −( ( ) )/∆  (5.101)

where ΔV is the “activation volume”.

5.4.4 Diffusion in liquids

In both liquids and solids, diffusion coeffi-
cients depend upon both the nature of the 
diffusing species and the nature of the media. 
As you might expect, small atoms generally 
diffuse more rapidly than large ions. The 
value of the diffusion coefficient in liquids can 
be estimated in a number of ways. Based on 
a model of molecular motion in a non-ionic 
liquid composed of molecules of diameter d, 
and assuming a kinetic energy per atom of 
3kT/2 and a mean free path length of 2αdT, 
where α is the coefficient of thermal expan-
sion, m is molecular mass and k is Boltz-
mann’s constant, the diffusion coefficient may 
be estimated as (Kirkaldy and Young, 1985):

while that depending on permanent vacancies 
is called extrinsic diffusion. The boundary 
between these regions will vary, depending 
upon the nature of the material and the impuri-
ties present. For NaCl, the transition occurs 
around 500°C, while for silicates it generally 
occurs above 1000°C. Where the diffusion 
mechanism changes, a break in slope can be 
observed on a plot of ln D vs. 1/T. For example, 
Figure 5.19 shows how the diffusion coeffi-
cient might change based on eqns. 5.98 and 
5.99.

Combining EB and EH into a single activa-
tion energy term, EA, which is the energy nec-
essary to create the vacancy and move another 
atom into it, a typical expression for tempera-
ture dependence of the diffusion coefficient in 
solids is:

 D D eo
E RTa= − /  (5.100)

where Do is again called the frequency factor. 
As we have seen, it will depend upon vibra-
tional frequency and the distance of the inter-
atomic jump.

Experimental observation supports our 
theoretical expectation of an exponential tem-
perature dependence of diffusion, for example, 
in a series of measurements of the diffusion 
coefficient, D, at various temperatures (Figure 
5.20). Taking the log of both sides of eqn. 
5.100, we obtain:

 ln lnD D
E
RT

o
A= −

Figure 5.19 Arrhenius plot illustrating how the 
change in diffusion mechanism from intrinsic to 
extrinsic can result in a break in slope.
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Figure 5.20 Schematic plot of log diffusion 
rate against inverse of temperature (Arrhenius 
plot) for two elements: Cs and Sr.
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Table 5.2 Self-diffusion frequency factors and 
activation energies.

Do EA

Species Phase m2/sec kJ/mol

Ar Basaltic melt 8.05 × 10−02 253
Ar Orthoclase 3.74 × 10−06 198
Ba Basaltic melt 4.21 × 10−07 130
Ca Basaltic melt 1.22 × 10−05 159
Co Basaltic melt 1.59 × 10−05 168
Fe Garnet 6.4 × 10−08 275
Mg Olivine 9.6 × 10−04 400
Mn Garnet 5.1 × 10−08 253
Na Plagioclase 7.94 × 10−04 268
Nd Basaltic melt 4.07 × 10−05 200
Nd Andesitic 

melt
1.08 × 10−05 169

O Olivine 4.57 × 10−09 338
O Anorthite 1.50 × 10−10 217
Pb K-feldspar 1.81 × 10−05 309
Rb Rhyolitic 

melt
2.01 × 10−07 127

Sr Diopside 
a-axis

6.4 × 10−04 452

Sr Diopside 
b-axis

1.2 × 1001 565

Sr Diopside 
c-axis

1.2 × 10−01 511

Sr Basaltic melt 1.12 × 10−05 169
Sr Rhyolitic 

melt
3.74 × 10−05 156

Sr Plagioclase 1.1 × 10−06 295
Sr Calcite 2.1 × 10−13 132
Zr Basaltic melt 1.40 × 10−05 189

Data from Zhang and Cherniak (2010)

Table 5.3 Trace diffusion coefficients for ions in infinitely dilute solution at 25°C.

D° D°
Cation 10−6cm−2sec−1 Anion 10−6cm−2sec−1

H+ 93.1 OH− 52.7
Na+ 13.3 Cl− 20.3
K+ 19.6 I− 20.0
Mg2+ 7.05 SO4

2− 10.7
Ca2+ 7.93 CO3

2− 9.55
Sr2+ 7.94 HCO3

2− 11.8
Ba2+ 8.48 NO3

− 19.0
Fe2+ 7.19
La3+ 6.17

Lasaga, Antonio C: Kinetic Theory in the Earth Sciences © 1980 Princeton University Press. Reprinted with permission of 
Princeton University Press.

 D d
m

T≅ α
π
8 3 2k /  (5.102)

This predicts a diffusion coefficient near the 
melting point of 10−4 cm/sec.

Diffusion coefficients in liquids are also com-
monly expressed in terms of viscosity. For 
uncharged species, the dependence of the diffu-
sion coefficient on molecular radius and viscosity 
is expressed by the Stokes-Einstein equation:

 D
T

r
= k

6πη
 (5.103)

where r is molecular radius and η is viscosity. 
From this equation, we see that diffusion becomes 
more difficult as the liquid becomes more  
structured (polymerized) because the viscosity 
increases with increasing polymerization.

Because of the electrical neutrality effect, 
ion charge is important in diffusion of ions. 
In aqueous electrolytes, tracer diffusion coef-
ficients depend on ion charge as:

 D
RT
z

o
o

= λ
F 2

 (5.104)

where λ° is the limiting ionic conductance 
(conductance extrapolated to infinite dilu-
tion) of the ion (in cm2/ohm-equivalent), F is 
Faraday’s constant, and z is the charge of the 
ion. The limiting ionic conductance is itself a 
function of temperature, which leads to a 
strong dependence of D° on temperature. The 
nought (°) denotes the standard state of infi-
nite dilution. Table 5.3 lists values of D° for 




