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The molecular weight terms cancel, of course, 
and the molar sums for cpx and basaltic liquid 
will generally be equal to within about 5%, 
so that eqn. 7.38 simplifies to:
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Example 7.2 illustrates this calculation.
Hack et al. (1994) extended the work of 

Gallahan and Nielsen (1992) to include the 
effects of pressure. They found the equilib-
rium constant for reaction 7.26 could be 
expressed as follows:

 
ln

( )

/K

Al Si Na K

Ca Ti= + × + +

+ + − −

c c
T

c
P

c X c D

c

cpx cpx
1 2

3
4 5

6

10000 !

where T is temperature (in kelvin), P is pres-
sure (in kbar), XCa is the mole fraction of 
clinopyroxene octahedral sites occupied by 
Ca, DTi is the clinopyroxene–melt partition 
coefficient for Ti, (Al + Si − Na − K) refers to 
the mole fraction of the corresponding oxides 
in the melt, and c1 . . . c6 are regression coef-
ficients. This equation is considerably more 
complex than eqn. 7.30, but is only margin-
ally more accurate. It does have the advantage 
of including the pressure term.

Beattie (1993) used a modification of the 
two-lattice model to predict the partitioning 
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where ΣNM is the sum of the “network modi-
fiers” and ΣNF is the sum of the “network 
formers”:
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(7.35)

ΣNF X X X= + +SiO NaO KO2 0 5 0 5. .  (7.36)

The activities of Sc, Y, and the rare earths are 
assumed equal to:
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where i is Sc, Y, La, and so on.
How does the D* we defined above relate 

to D as defined in eqn. 7.2? With activities as 
defined in eqn. 7.34, D is related to D* as:
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Example 7.2 Calculating partition coefficients

Using the composition of the basalts given below, calculate the clinopyroxene-matrix partition coef-
ficients for La and Sm using the Gallahan and Nielsen equations and the coefficients given in Table 
7.4. Assume a temperature of 1080°C.

Oxide Mauna Loa tholeiite wt % Mount Hope alkali basalt wt %

SiO2 49.56 50.95
TiO2 4.28 1.38
Al2O3 14.09 17.87
FeO 12.47 8.64
MnO 0.22 0.21
MgO 4.62 6.18
CaO 9.63 11.29
Na2O 3.03 2.32
K2O 1.18 0.95
P2O5 1.02 0.51

(Continued)
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Answer: Once again this is a problem that is best done in a spreadsheet. Our first task will be to 
convert the wt. percent to mole fractions. We calculate the moles of each component (Gallahan and 
Nielsen chose their components as single cation oxides, except for P2O5) by dividing by the molecular 
weight. We convert this to mole fractions by dividing by the sum of the moles of all components. 
Then we calculate the sums of the network formers and network modifiers (eqns. 7.33 and 7.36), 
and finally the activities of SiO2 and AlO1.5 using eqn. 7.34. We calculate K using eqn. 7.28 (tem-
perature in kelvins, as in all thermodynamically based formulae). The distribution coefficient, D*, 
can then be calculated using eqn. 7.31. Finally, we convert to D using eqn. 7.39.

Though the temperature is the same and the compositions of these basalt magmas are similar, 
there is a large difference, almost a factor of 2, in the partition coefficients we have calculated.

Oxide

Mauna Loa Mt. Hope

Mole. Wtwt % moles mol fract. wt % moles mol fract.

SiO2 49.56 0.826 0.472288 50.95 0.8492 0.473491 60
TiO2 4.28 0.054 0.030636 1.38 0.0173 0.009633 79.88
Al2O3 14.09 0.276 0.158029 17.87 0.3505 0.195454 50.98
FeO 12.47 0.174 0.099235 8.64 0.1203 0.067051 71.85
MnO 0.22 0.003 0.001773 0.21 0.003 0.001651 70.94
MgO 4.62 0.115 0.065532 6.18 0.1533 0.085486 40.31
CaO 9.63 0.172 0.098185 11.29 0.2013 0.112255 56.08
Na2O 3.03 0.098 0.055887 2.32 0.0748 0.04173 31
K2O 1.18 0.025 0.014325 0.95 0.0202 0.011247 47.1
P2O5 1.02 0.007 0.004109 0.51 0.0036 0.002003 141.94
Total 100.1 1.749 1 100.3 1.7934 1
NM 0.387289 0.420556
NF 0.5425 0.526468
aSiO2 0.870578 0.899374
aAlO1.5 0.065156 0.126982
ln(aSiO2*aAlO1.5) −2.86958 −2.16977
T 1353

La Sm Mauna Loa Mount Hope
a 119 11371 lnD La lnD Sm lnD La lnD Sm
b 1.95 8.6 −4.73162 −3.0653 −4.03182 −2.3655
ln K −1.86205 −0.1957 D* La D* Sm D* La D* Sm
D* 0.008812 0.0466 0.017742 0.0939
D 0.02275 0.1204 0.04219 0.223329

of Mg, Fe, Mn, Co, and Ni between olivine, 
orthopyroxene, and melt as a function of tem-
perature and composition. Beattie relaxes the 
assumption that the network-forming lattice 
is ideal and introduces an empirical function 
to calculate the activity of SiO2. He then cal-
culated values of ΔHm´ ΔVm´ and ΔSm from 
experiments on mineral melt pairs. The result-
ing thermodynamic data were used to calcu-
late the equilibrium constant for the exchange 
reaction, for example:

 2 22 4 2 4MO Mg SiO MgO M SiO! !"+ +ol ol

where M is Fe, Mn, Co, and so on. The equi-
librium constant is:
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temperature or melt composition may not  
be known, or great accuracy may not be 
needed. Table 7.5 is a set of mineral–melt 
partition coefficients for mafic and ultramafic 
magmas. They have been primarily assembled 
from the GERM partition coefficient data-
base (www.earthref.org/GERM) and adjusted 
where necessary to make them self-consistent. 
The uncertainties in some cases can be con-
siderable. This is particularly true where the 
values are very small, in which case the uncer-
tainty may be an order of magnitude or more 
(in most modeling efforts, however, once the 
value of a partition coefficient is less than 

where γ is the activity coefficient, and ΔS, ΔH, 
and ΔV refer to the difference in entropy, 
enthalpy, and volume changes of fusion 
between the Mg version and the M version of 
phase α (e.g., ∆ ∆ ∆S S Sm

M
m
MgO= − −-α α ).

7.4.4 Mineral–liquid partition coefficients for 
mafic and ultramafic systems

As we have seen, partition coefficients depend 
on temperature, pressure, and the composi-
tion of the phases involved. There are never-
theless circumstances when a general set of 
partition coefficients is useful. For example, 

Table 7.5 Mineral–melt partition coefficients for basalts.

Olivine Opx Cpx Plag Spinel Garnet Amph

Li 0.35 0.11 0.25 0.3 0.13 0.04 0.1
Be 0.03 0.06 0.05 0.37 0.1 0.004 0.15
B 0.01 0.003 0.03 0.13 0.08 0.005 0.06
K 0.001 0.003 0.007 0.15 0.05 1.4
Sc 0.3 0.6 2 0.08 0.5 2.6 2.1
V 0.09 2.6 0.78 0.1 1.3 3.5 4.0
Ga 0.024 0.38 0.7 1.7 3 1.0 0.5
Ge 1.0 1.4 2 0.5 0.1 0.5 0.3
Rb 0.0001 0.001 0.005 0.1 0.03 0.007 0.5
Sr 0.0001 0.001 0.1 1.5 0.005 0.01 0.3
Y 0.005 0.01 0.4 0.008 0.05 3.1 0.4
Zr 0.001 0.004 0.12 0.03 0.06 0.27 0.2
Nb 0.0001 0.015 0.01 0.1 0.0006 0.05 0.15
Cs 0.0002 0.0009 0.06 0.05 ∼0 0.0005 0.06
Ba 0.000002 0.000002 0.0005 0.3 0.0006 0.0007 0.28
La 0.000001 0.0007 0.07 0.08 0.001 0.001 0.04
Ce 0.000003 0.0017 0.12 0.06 0.0015 0.005 0.1
Pr 0.00001 0.003 0.18 0.05 0.0023 0.02 0.17
Nd 0.00004 0.006 0.28 0.05 0.0034 0.07 0.21
Sm 0.0001 0.012 0.42 0.05 0.005 0.2 0.25
Eu 0.0005 0.024 0.45 0.5 0.006 0.4 0.33
Gd 0.002 0.04 0.49 0.04 0.0065 0.6 0.36
Tb 0.005 0.06 0.56 0.04 0.007 1.0 0.4
Dy 0.009 0.08 0.62 0.045 0.0071 1.7 0.46
Ho 0.013 0.1 0.66 0.05 0.0072 2.5 0.51
Er 0.015 0.13 0.72 0.055 0.0073 3.6 0.57
Tm 0.018 0.025 0.76 0.058 0.0074 5.0 0.585
Yb 0.02 0.02 0.8 0.06 0.0075 6.5 0.6
Lu 0.022 0.22 0.8 0.06 0.0075 7.1 0.6
Hf 0.001 0.021 0.24 0.03 0.05 0.2 0.6
Ta 0.00001 0.015 0.01 0.17 0.06 0.1 0.1
Pb 0.0001 0.0001 0.001 0.75 0.0005 0.0001 0.05
Th 0.00001 0.006 0.0013 0.13 0.01 0.001 0.004
U 0.00001 0.015 0.0001 0.1 0.01 0.01 0.004

Based on values in the GERM partition coefficient database (http://earthref.org/GERM/). Some values were interpolated; others 
were adjusted for self-consistency.

http://www.earthref.org/GERM
http://earthref.org/GERM/
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7.5 CRYSTAL-FIELD EFFECTS

We pointed out earlier that the ions of the 
alkalis, alkaline earths and rare earths can be 
satisfactorily modeled as hard spheres con-
taining point charges at their centers. This 
model of ionic behavior is notably less satis-
factory for many of the transition metals, 
because of the complex geometry of the 
bonding electron orbitals, illustrated in Figure 
7.17. A more accurate prediction of bonding 
and substitution requires consideration of the 
electrostatic field of surrounding ions on the 
electron structure of transition elements.

Crystal-field theory, which was developed in 
1929 by physicist Hans Bethe, describes the 
effects of electrostatic fields on the energy levels 
of a transition-metal ion in a crystal structure. 
These electrostatic forces originate from the 
surrounding negatively charged anions or  
dipolar groups, known as ligands. Crystal  
field theory is the simplest of several theories  
that attempt to describe the interaction and 

about 0.01, its exact value will make very 
little difference). Uncertainties of partition 
coefficient values close to 1 are much smaller.

Figure 7.16 illustrates the rare earth parti-
tion coefficients from this dataset. In general, 
the minerals clinopyroxene, garnet and plagi-
oclase and, when present, amphibole (amphi-
bole is not usually present in basalts because 
it is not stable at low pressure or above 
1100°C) will control the patterns of incom-
patible element partitioning during melting 
and crystallization of basaltic magmas because 
they have the highest partition coefficients. 
Olivine, though by far the most abundant 
mineral in the upper mantle, will produce 
little fractionation* of incompatible elements 
because its partition coefficients are so low. 
Spinel, which is usually not present in more 
than a few volume percent, will also have 
little effect on relative trace element abun-
dances. On the other hand, olivine largely 
controls the fractionation of the compatible 
transition metals.
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* Fractionation, in this context, refers to a change in the relative abundances, or ratios, of elements. For example, 
if the ratio of La to Sm changes during a process, these elements are said to have been fractionated by that process.

Figure 7.16 Rare earth mineral–melt partition 
coefficients for mafic magmas. Data from 
Table 7.5.

Figure 7.17 Geometry of the d orbitals.
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toward the ligand, are repelled to a greater 
extent than those in the t g2  orbitals. The 
energy separation between the t g2  and the eg 
orbitals is termed octahedral crystal-field 
splitting and is denoted by Δo. The t g2  orbitals 
are lowered by 2/5Δo while the eg orbitals are 
raised by 3/5Δo relative to the mean energy of 
an unperturbed ion. Therefore each electron 
in a t g2  orbital stabilizes a transition metal ion 
by 2/5Δo and each electron in an eg orbital 
diminishes stability by 3/5Δo. The resultant net 
stabilization energy (i.e., ΣΔo), is called the 
octahedral crystal field stabilization energy or 
octahedral CFSE.

bonding between ligands and transition  
metals. In crystal field theory, the ligands are 
regarded simply as negative point charges 
about the transition metal ion. The electro-
magnetic field produced by these ligands, the 
“crystal field”, destroys the spherical symme-
try possessed by an isolated transition metal. 
The changes induced depend upon the type, 
position, and symmetry of the coordinating 
ligands, as well as the nature of the transition 
metal.

In the usual case, electron orbitals are filled 
successively from inner to outer as one pro-
ceeds “up” the periodic table to heavier ele-
ments. In transition metals, however, filling of 
the outermost s orbital is begun before the d 
orbitals are completely filled. Ions are formed 
when the outermost s and, in some cases, 
some of the outermost d electrons (outermost 
will be 4s and 3d for the first transition series, 
5s and 4d for the second) are removed from 
the metal.

In an isolated first series transition metal, 
the five 3d orbitals (each containing up to 2 
electrons: a total of 10 electrons are possible 
in the d orbitals) are energetically equiva-
lent and have equal probability of being  
filled: they are said to be degenerate. They 
possess, however, different spatial configura-
tions (Figure 7.17). One group, the eg orbitals, 
consisting of the dz2 and the dx y2 2−  orbitals, has 
lobes directed along the Cartesian coordi-
nates, while the t g2  group, consisting of the 
dxy, dyz, and dxz, possess lobes between the 
Cartesian axes. In a crystal field the 3d orbit-
als are no longer degenerate, and some have 
lower energy than others. Thus there can be 
a relative energy gain by preferentially filling 
low-energy d orbitals. This energy gain is 
traded off against the energy cost of placing 
two electrons in a single orbital. Depending 
on this tradeoff, preferentially filling low-
energy d orbitals can lower the overall energy 
of some transition metal ions, hence stabiliz-
ing them, in certain lattice configurations rela-
tive to other configurations. The effect is a 
lattice site preference of some transition 
metals that would not be predicted simply 
from consideration of ion charge and size.

In octahedral coordination, the transition 
metal is surrounded by six identical ligands 
(Figure 7.18). Electrons in all orbitals are 
repelled by the negatively charged ligands, but 
electrons in the eg orbitals, the orbitals directed 
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Figure 7.18 (a) Orientation of ligands and 
Cartesian coordinates for a metal ion in 
octahedral coordination. (b) Orientation of 
ligands (points) and dxy (shaded) and dx y2 2−  
(unshaded) orbitals in the x – y plane of a 
metal in octahedral coordination. (c) Energy-
level diagram for d orbitals of a free 
transition metal ion, an ion in a spherically 
symmetric crystal field and an octahedral 
crystal field. In an octahedral crystal field, the 
energy of the d orbitals projected between the 
coordinates and the ligands (the t g2  orbitals) 
are lowered relative to the energy of the 
orbitals projected toward the ligands (eg 
orbitals). After Burns (1970). Figures 2.3 and 
2.4. Reprinted with the permission of 
Cambridge University Press.
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In tetrahedral coordination (Figure 7.19), 
the eg orbitals become more stable than the t g2  
orbitals, but the tetrahedral crystal-field split-
ting parameter, Δt, is smaller than Δo. Other 
things being equal, Δt = 4/9Δo.

The crystal field splitting parameter, Δ, 
depends on a number of things, but some 
generalizations can be made:

1. Values of Δ are higher for +3 ions than 
+2 ions.

2. The values are 30% higher for each suc-
ceeding transition element (left to right in 
the periodic table).

3. Δ depends on the ligands coordinating 
the transition metal. Δ may be arranged 
to increase as follows: halides < OH− 
(hydroxides) < silicates < H2O < SO4.

4. Δ depends on the symmetry of the coor-
dinating ligands (as we have seen).

How electrons are distributed in an octa-
hedrally coordinated transition metal is  
governed by two opposing tendencies. Cou-
lomb forces between electrons cause them to 
be distributed over as many orbitals as pos-
sible, but crystal-field splitting favors the 
occupation of lowest energy orbitals. These 
two factors in turn depend upon the number 
of d electrons possessed by the metal and the 
strength of the crystal field.

In ions having 1, 2 or 3 d electrons, all 
electrons will be in only t g2  orbitals, regardless 
of the strength of the crystal field, since there 
is only one electron per orbit. In ions having 
8, 9, or 10 electrons in d orbitals, each orbital 
must contain at least 1 electron and three 
orbitals must contain 2 electrons, so all the 3 
t g2  orbitals will be filled even for weak ligands. 
But in ions having 4, 5, 6 and 7 d electrons, 
there is a choice. If the crystal-field splitting 
is large, as in the case of strong field ligands, 
all electrons are in t g2  orbitals. This is the low-
spin case, because the spins of electrons are 
anti-aligned (recall the Pauli exclusion princi-
ple that electrons can only occupy the same 
orbit if their spins are opposite). When the 
crystal-field splitting is small, the energy cost 
of placing two electrons in the same orbit is 
greater than the energy gain from the octahe-
dral CFSE, and electrons are distributed over 
both t g2  and eg orbitals. This is known as the 
high-spin case because the electrons will pref-
erentially occupy different orbitals with their 
spins parallel. Apart from Co3+ and Ni3+, all 
first series transition metals exist in the high-
spin state on the Earth’s surface. Cr3+, Ni2+, 
and Co3+ have particularly high CFSE in octa-
hedral coordination.

The distinction between high- and low-spin 
configurations is important in understanding 
magnetic properties of transition metal com-
pounds because magnetism relates to spin 
alignment of electrons. Also, the crystal-field 
splitting energies are in the visible light band 
and hence relate to the coloration of transition-
metal-bearing minerals. For example, con-
sider titan-augite (a variety of clinopyroxene 
containing appreciable amounts of Ti). In 
Ti3+, the single d electron is normally in the 
t g2  orbital. Absorption of light of appropriate 
frequency (ν = Δo/h) excites the electron into 
an eg orbital. This energy corresponds to 
violet light, which is emitted when the elec-
tron returns to the t g2  orbital.
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Figure 7.19 (a) Orientation of ligands and 
Cartesian coordinates for a metal ion in 
tetrahedral coordination. (b) Orientation of 
ligands (points) and dxy (shaded) and dx y2 2−  
(unshaded) orbitals in the x – y plane of a 
metal in tetrahedral coordination. Black 
points are in front of plane of orbitals, gray 
points are behind the plane. (c) Energy-level 
diagram for d orbitals of a free transition 
metal ion, and an ion in a spherically 
symmetric crystal field and a tetrahedral 
crystal field. Adapted from Burns (1970).



TRACE ELEMENTS IN IGNEOUS PROCESSES 297

nated polyhedra is expected from the 
Jahn-Teller theorem, which states that if the 
ground state of a molecule is degenerate, it 
will distort to make one of the energy levels 
more stable (Figure 7.20). For example, if one 
of the d orbitals is filled or empty while 
another is half-filled, the environment about 
the transition metal ion is predicted to distort 
spontaneously to a different geometry in 
which a more stable electronic configuration 
is attained by making the occupied orbital 
lower in energy. Further splitting of d orbital 
energy levels occurs when transition metal 
ions are in distorted coordination.

This can be illustrated for the case of Mn3+ 
in octahedral coordination with oxygen. The 
Mn3+ ion has the high-spin configuration 
(Table 7.6) in which each t g2  orbital is occu-
pied by one electron and the fourth electron 
may occupy either of the eg orbitals. If the 
four oxygen atoms in the x–y plane move 
toward, and the two oxygens along the z-axis 
move away from, the central Mn3+ ion (Figure 
7.20a), then the one eg electron will favor the 
dz2 orbital in which the repulsion by the O 
ions is smaller than in the dx y2 2−  orbital. Thus 
the eg orbital group separates into two energy 
levels with the dz2 becoming more stable. The 
t g2  orbital group is also split, with the dxz and 
dyz becoming more stable than the dxy orbital. 
If the two O ions along the z-axis move closer 
to the Mn3+ ion (Figure 7.20c), the dx y2 2−  

5. Δ varies with interatomic distance (in-
versely proportional to the 5th power).

In silicates, oxygen atoms frequently form 
distorted coordination polyhedra about 
cations, and metal–oxygen interatomic dis-
tances are not constant. Distortion of coordi-
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Table 7.6 Electronic configurations and crystal field stabilization energies of first transition series 
metal ions in octahedral configuration. From Burns (1970). Reprinted with the permission of 
Cambridge University Press.

Number 
of 3d 
electrons Ion

High spin state Low spin state

Electronic 
configuration

Unpaired 
electrons CFSE

Electronic 
configuration

Unpaired 
electrons CFSEt2g eg t2g eg

0 Sc3+, Ti4+ 0 0 0 0
1 Ti3+ ↑ 1 2/5Δo ↑ 1 2/5Δo

2 Ti2+, V3+ ↑↑ 2 4/5Δo ↑↑ 2 4/5Δo

3 V2+, Cr3+, Mn4+ ↑↑↑ 3 6/5Δo ↑↑↑ 3 6/5Δo

4 Cr2+, Mn3+ ↑↑↑ ↑ 4 3/5Δo ↑↓↑↑ 2 8/5Δo

5 Mn2+, Fe3+ ↑↑↑ ↑↑ 5 0 ↑↓↑↓↑ 1 10/5Δo

6 Fe2+, Co3+, Ni3+ ↑↓↑↑ ↑↑ 4 2/5Δo ↑↓↑↓↑↓ 0 12/5Δo

7 Co2+, Ni3+ ↑↓↑↓↑ ↑↑ 3 4/5Δo ↑↓↑↓↑↓ ↑ 1 9/5Δo

8 Ni2+ ↑↓↑↓↑↓ ↑↑ 2 6/5Δo ↑↓↑↓↑↓ ↑↑ 2 6/5Δo

9 Cu2+ ↑↓↑↓↑↓ ↑↓↑ 1 3/5Δo ↑↓↑↓↑↓ ↑↓↑ 1 3/5Δo

10 Zn2+ ↑↓↑↓↑↓ ↑↓↑↓ 0 0 ↑↓↑↓↑↓ ↑↓↑↓ 0 0

Figure 7.20 Arrangement of ligands and 
energy levels for (a) an octahedral site 
distorted along the z-axis; (b) an undistorted 
site; and (c) an octahedral site distorted along 
the y-axis. Burns (1970). Reprinted with the 
permission of Cambridge University Press.
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minerals, the effects of covalent bonding, in 
which the orbitals become hybridized, must 
be considered, but such consideration is 
beyond the scope of our treatment.

7.5.1 Crystal field influences on transition 
metal partitioning

We can now return to the transition metals 
and crystal-field theory to explain some of the 
peculiarities of their behavior. We noted that 
the energy of some d orbitals is reduced (sta-
bilized) by the effects of the electrostatic field 
of coordinating ligands in both octahedral 
and tetrahedral sites, and that the octahedral 
CFSE is always greater than the tetrahedral 
CFSE. We now introduce one more quantity: 
the octahedral site preference energy (OSPE), 
which is defined as the octahedral CFSE minus 
the tetrahedral CFSE. Table 7.7 lists these 
energies for various first transition series 
metals. Silicate melts contain both octahedral 
and tetrahedral sites, but transition metals, 
with a few exceptions, occupy only octahe-
dral sites in silicate minerals. Thus the OSPE 
is an indicator of the preference of the transi-
tion ion for solid phases over liquid phases: 
the higher the OSPE, the more readily it is 

becomes more stable than the dz2. In either of 
the distorted environments, the Mn3+ becomes 
more stable than in an undistorted octahedral 
site. Transition metals subject to Jahn-Teller 
distortions in octahedral coordination are 
those with d4, d9, and low-spin d7 configura-
tions, in which one or three electrons occupy 
eg orbitals. Looking at Table 7.6, we can 
see that these are Cr2+, Mn3+, Cu2+, Co2+ and 
Ni3+ ions.

As noted, electronic transition energies are 
related to color. Because of the distortion, 
additional electronic transitions become pos-
sible. The differing probabilities of the various 
electronic transitions in polarized radiation  
is one of the causes of pleochroism* in 
minerals.

Crystal-field effects lead to irregularities in 
the interatomic distances, or ionic radii of 
transition metals. As you might expect, they 
depend on the nature of the site, and for a 
given site, there need not be a smooth con-
traction of interatomic distances with increas-
ing atomic number.

The application of crystal field theory is 
restricted to compounds where the transition 
metal forms a dominantly ionic bond with 
surrounding ligands. In sulfides, and related 

Table 7.7 Crystal-field splittings and stabilization energies in transition metal ions.

Number 
of 3d 
electrons Ion

Electronic 
configuration

D -(cm )
M(H O)

1

2 6( )aq
n+

CFSE 
Hydrate  
(kJ/mole)

Octahedral 
CFSE  
(kJ/mole)

Tetrahedral 
CFSE  
(kJ/mole)

Octahedralsite 
preference 
energy (kJ)

1 Ti3+ ( )t g2
1 20300 2/5Δ = 97.1 87.4 58.6 28.9

2 V3+ ( )t g2
2 17700 4/5Δ = 169.0 160.2 106.7 53.6

3 Cr3+ ( )t g2
3 17400 6/5Δ = 249.4 224.7 66.9 157.7

4 Cr2+ ( )t g2
3 (eg)1 13900 3/5Δ = 99.6 100.7 29.3 71.1

4 Mn3+ ( )t g2
3 (eg)1 21000 3/5Δ = 150.6 135.6 40.2 95.4

5 Mn2+ ( )t g2
3 (eg)2 7800 0 0 0 0

5 Fe3+ ( )t g2
3 (eg)2 13700 0 0 0 0

6 Fe2+ ( )t g2
4 (eg)2 10400 2/5Δ = 49.8 49.8 33.1 16.7

6 Co3+ ( )t g2
6 18600 12/5Δ = 533.5* 188.3 108.8 79.5

7 Co2+ ( )t g2
5 (eg)2 9300 4/5Δ = 89.1 92.9 61.9 31.0

7 Ni3+ ( )t g2
6 (eg)1 – 9/5Δ =

8 Ni2+ ( )t g2
6 (eg)2 8500 6/5Δ = 29.6 122.2 36.0 86.2

9 Cu2+ ( )t g2
6 (eg)3 12600 3/5Δ = 21.6 90.4 26.8 63.6

* Low-spin complexes. The calculated CFSE must be reduced by the energy required to couple two electrons in a t2g orbital. 
Data from Orgel (1966) and McClure (1957).

* Pleochroism refers to the property possessed by some crystals of exhibiting different colors when viewed along 
different axes in polarized light.
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always richer in Ni than the liquid. The reason 
for this is that in the pure olivine system, only 
octahedral sites exist in the melt and the solid, 
and thus Ni has no particular preference for 
the solid due to crystal-field effects. But basal-
tic melts have both tetrahedral and octahedral 
sites, while olivine has only octahedral sites 
(available to Ni). The greater availability of 
octahedral sites in the solid provides an added 
incentive for Ni to partition into olivine rela-
tive to basaltic liquid.

7.6 TRACE ELEMENT DISTRIBUTION 
DURING PARTIAL MELTING

In igneous geochemistry, trace elements are 
useful in understanding magmatic processes 
and in evaluating the composition of magma 
sources such as the mantle and lower crust. 
To make use of trace elements in such 
studies, we need to understand how mag-
matic processes such as partial melting and 
fractional crystallization will affect trace 
element abundances.

The task of the igneous geochemist is often 
to make inferences about the sources of 
magma, the mantle and lower crust, from the 
composition of the magmas themselves. This 
can be done through a mathematical model 
of melting. In the following sections, we will 
consider two simple alternative models of 
melting: batch, or equilibrium, melting, and 
fractional melting. In fractional melting, the 
melt is extracted as soon as it is created, and 
only an infinitesimal increment of melt will be 
in equilibrium with the solid residue at any 
given time. In batch melting, a finite amount 
of melt, for example 5 or 10%, is produced 
and equilibrates completely with the solid 
residue.

Once a melt is created and begins to rise, 
it may further interact with the surrounding 
“wallrock”. We will also consider one possi-
ble model of this interaction: “zone refining”. 
Choosing between alternative models of 
partial melting requires a knowledge of how 
melting and melt extraction actually occurs. 
Unfortunately, melting and melt extraction in 
the Earth remain poorly understood because 
we are unable to observed them directly. 
Although melting experiments are useful in 
determining phase relationships, melting tem-
peratures, and distribution coefficients, they 
do not provide much direct information on 

partitioned into a solid phase. Predicted order 
of uptake is: Ni > Co > Fe2+ > Mn for +2 ions 
and Cr > V > Fe3+ for +3 ions, which agrees 
with observation. Since the number of octa-
hedral sites in the liquid decrease with in-
creasing SiO2 concentration, crystal-field 
theory explains why Ni partition coefficients 
are highly composition-dependent, increasing 
with increasing SiO2 concentration.

It should be emphasized that there are no 
crystal field effects for transition metals such 
as Sc2+, Ti4+, Y3+, Zr4+, Nb5+, Hf4+, and Ta5+, 
where the d electrons are not present in the 
ion, or where the d shell is completely filled 
(Zn2+) in the usual valence state, at least when 
the electrons are in their ground state. 
However, color, which arises from excitation 
of electrons into higher orbitals and subse-
quent decay to the ground state, may still 
relate to crystal field effects even when the d 
orbitals are not filled in the ground state. The 
second and third transition series metals for 
which crystal-field effects are expected are all 
highly siderophile or chalcophile and highly 
depleted in the Earth’s crust and mantle. Little 
information is available on their behavior in 
silicate systems.

An understanding of crystal-field theory 
solves an interesting dilemma. A phase (T–X) 
diagram for the binary system Mg2SiO4–
Ni2SiO4 is shown schematically in Figure 
7.21. It is apparent from a quick glance that 
for any coexisting liquid and solid in the 
system, the solid will be poorer in Ni than the 
liquid, i.e., (Ni/Mg)ol < (Ni/Mg)liq. However, 
olivine crystallizing from basaltic liquids is 

Liquid + Solid

Mg2SiO4

T

Liquid

Solid

Ni-poor Solid

Ni-rich Liquid

Ni2SiO4

Figure 7.21 Schematic phase diagram for the 
system forsterite–Ni olivine showing Ni-poor 
olivine in equilibrium with Ni-rich liquid.
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7.6.2 Fractional melting

Now consider the case where only an infini-
tesimally small amount of melt equilibrates 
with the solid residue, in other words, imagine 
we remove the liquid as fast as we make it. If 
is is the mass of element i in the solid phase 
being melted, S the mass of the solid phase, L 
the mass of the liquid phase, il the mass of i 
in the liquid, S° the original mass of the solid 
(and mass of the system), and i° the original 
mass of i in the solid (and system), then:

C
i
S

i i
S L

C
D

i i
S L

di
dLi

s
s l

i
i

= = ° −
° −

= ° −
° −

=and !
! !1

This can be rearranged so that we can inte-
grate it to obtain:

 
C
C D

Fi

i
o

D
!

= − −1
1 1 1( ) /  (7.43)

If we subsequently mix the various melt  
fractions produced over a melt interval from 
0 to F, the composition of this aggregate 
liquid, C is:

 C
C F

Fi

i
o

Di
!

= − −( )1
1 1 1( ) /  (7.44)

Figure 7.22 illustrates the variation of the 
liquid enrichment (Cℓ/Co) with degree of 
melting for both batch and fractional melting. 

how melt is extracted. By and large, our 
knowledge of the melt extraction process 
comes from indirect inferences. Rarely, we 
can identify partial melting residues that have 
been tectonically emplaced at the surface of 
the Earth, and studies of these have provided 
some insights into the melting process. We 
will consider some of these insights in a sub-
sequent section.

7.6.1 Equilibrium or batch melting

Equilibrium crystallization or melting implies 
complete equilibration between solid and 
melt. This means that the entire batch equili-
brates with the residue before it is removed. 
From mass balance we may write:

 C C F C Fi
o

i
s

i= − +( )1 !  (7.41)

where i is the element of interest, C° is the 
original concentration in the solid phase (and 
the concentration in the whole system), Cℓ is 
the concentration in the liquid, Cs is the con-
centration remaining in the solid and F is the 
melt fraction (i.e., mass of melt/mass of 
system). Since D = Cs/Cℓ, and rearranging:

 C C D F C Fi
o

i i
s

i= − +! ! !/ ( )1

or:

 
C
C D F F

i

i
o s

!

!=
− +
1

1/ ( )
 (7.42)

This equation is an extremely useful one and 
describes the relative enrichment or depletion 
of a trace element in the liquid as a function 
of degree of melting. Two approximations are 
often useful and give us a feel for this equa-
tion. First consider the case where D << F. In 
this case Cℓ/C° ≈ 1/F, that is, the enrichment 
is inversely proportional to the degree of 
melting. This is the case for highly incompat-
ible elements at all but the smallest degrees of 
melting. Now consider the case where F 
approaches 0. In this case Cℓ/C° ≈ 1/D, the 
enrichment is inversely proportional to the 
partition coefficient. Thus the maximum 
enrichment possible in a partial melt is 1/D. 
For highly compatible elements, that is, those 
with large D such as Ni, the depletion in the 
melt is 1/D when F is small and is relatively 
insensitive to F.
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Figure 7.22 Variation in Cℓ/Co with degree of 
melting, F, for various partition coefficients 
for batch and fractional melting.
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values are constants. In reality, they will be 
functions of F. The equations for batch and 
fractional melting in this non-modal melting 
case become:

Non-modal batch melting:

 
C
C F P D

i

i
o

i i
o

!

=
− +

1
1( )

 (7.48)

Non-modal fractional melting

 C
C D

PF
D

i

i
o

i
o

i

i
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Pi!

= −



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−1
1
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 (7.49)

The aggregate liquid for non-modal fractional 
melting is given by:

Aggregate:
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D
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 (7.50)

These equations are from Shaw (1970); their 
use is illustrated in Example 7.3.

7.6.5 Continuous melting

In most circumstances, the way in which rock 
melts in the Earth is probably intermediate 
between our batch and fractional melting 
models: only part of the melt is extracted 
continuously, while some fraction remains to 
fill the pore spaces between the mineral grains. 
This process has been called continuous 
melting. Let’s look at how we can modify our 
fractional melting equation (eqn. 7.43) for 
this situation.

Consider a rock undergoing melting. We 
assume that it has a melt-filled porosity of ϕ, 
where ϕ is defined by mass. We can replace 
the partition coefficient in eqn. 7.43 with an 
effective partition coefficient, D′, which takes 
account of a fraction of liquid, ϕ, in the rock 
with a partition coefficient of 1 (Albarède, 
1995). Equation 7.43 thus becomes:

 
C
C D

Fi

i
o

i

Di
!

=
′

−( ) ′−1
1 1 1/  (7.51)

F in this case is the fraction of melt extracted, 
which differs from the total amount of melt 
produced by an amount equal to ϕ. D′ is 

The aggregate liquid of fractional melting, 
which may be the most realistic of the three 
equations we have considered so far, follows 
a trend close to that of batch melting.

7.6.3 Zone refining

If melt percolates slowly through the source 
region, trace element fractionation may be 
best approximated by equations governing 
zone refining. The term zone refining comes 
from the industrial purification process in 
which a melt zone is caused to migrate along 
a column of material. Several passes of this 
process efficiently extract low melting-
temperature components. The relevant equa-
tion is:

 
C
C D D

ei

i
o

i i

D Ri
!

= − −





−1 1
1  (7.45)

where R is the ratio of host, or wallrock, to 
melt. Note that for large R, Cℓ/Co ∼ 1/D.

7.6.4 Multiphase solids

The above equations are relevant when the 
solid undergoing melting is homogenous. If it 
consists of several phases, we need to replace 
D with a bulk distribution coefficient, which 
is simply the weighted mean of the individual 
solid/liquid partition coefficients:

 D D m Di i
o

i= = ∑ φ
φ

φ

/!  (7.46)

where m is simply the modal mass fraction of 
phase ϕ, that is, the fraction of phase ϕ as it 
exists in the rock.

In general, minerals do not enter the melt 
in the proportion in which they exist in a rock 
(i.e., their modal proportions). Thus a realis-
tic melting model requires that we modify our 
equations to account for this. We need to 
define a new parameter P, which is simply 
the average individual partition coefficients 
weighted according to the proportions in 
which the minerals enter the melt:

 P p Di i= ∑ φ
φ

φ

/!  (7.47)

where p is the proportion in which phase ϕ 
enters the melt. It is often assumed that the pϕ 
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Example 7.3 Modelling partial melting

Geochemists are often interested in the ratios of incompatible trace elements. For one thing, ratios 
of incompatible elements are less affected by fractional crystallization than are trace element abun-
dances. To illustrate the effect of partial melting on a trace element ratio, we will calculate how the 
ratio of La to Sm varies in basalts produced by different extents of melting in the mantle.

We need to make some assumptions about the composition and mineralogy of the mantle. These 
assumptions are: (1) the mantle “source” is composed of 58% olivine, 27% orthopyroxene, 12% 
clinopyroxene, and 3% spinel; (2) these minerals enter the melt in the proportions 20% olivine, 
25% orthopyroxene, 45% clinopyroxene, and 10% spinel; (3) that this source contains 1 ppm La 
and 1 ppm Sm. Using the partition coefficients for peridotite mantle listed below, we calculate the 
La and Sm concentrations at 2% and 10% melting using the batch melting model.

Our first step is to calculate the Do and P values for each element using eqns. 7.46 and 7.47. 
Doing so, we find DLa = 0.007, DSm = 0.047, PLa = 0.025, PSm = 0.166. Using eqn. 7.48, we find that 
at 10% melting, [La] = 9.5 ppm and [Sm] = 7.66 ppm. So a 10% melt (F = 0.1) of a mantle having 
La/Sm = 1 will have La/Sm = 9.5/7.66 = 1.25. For the same calculation at 2% melting we obtain 
[La] = 37.3 ppm and [Sm] = 15.65 ppm and La/Sm = 2.38. Thus at a fairly large degree of melting 
(10%), the La/Sm ratio was only 25% greater than that of the source. At a small degree of melting, 
the La/Sm ratio was more than a factor of 2 greater than that of the source.

 φ ρ ϕ
ρ ϕ ρ ϕ

=
− +
!

!s( )1
 (7.55)

where ϕ is the mass porosity, φ volume poros-
ity, ρs is the density of the solid and ρℓ is the 
density of the liquid.

We can also derive an equation for an 
aggregate continuous melt simply by replac-
ing D with D′ in eqn. 7.44. Figure 7.23 com-
pares continuous and fractional melting for 
D = 0.0001 and ϕ = 0.001. Leaving residual 
melt in the pores has the effect of buffering 
the depletion of the solid, so that the concen-
tration of an incompatible element does not 
decrease as fast in the case of continuous 
melting as for fractional melting. As Figure 
7.23 shows, for high values of F, the aggre-
gate melts produced by fractional and con-
tinuous melting have almost identical 
compositions. The compositions of the resid-
ual solids, however, will be far different, with 
the residue of fractional melting being far 

related to the usual partition coefficient, D, 
(eqn. 7.1) as:

 ′ = − +D Di i( )1 φ φ  (7.52)

The exponential term in eqn. 7.51, 1/D′ − 1, 
is related to D by:
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Substituting these back into eqn. 7.51, our 
expression for continuous melting written in 
terms of the usual partition coefficient is:
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Porosity is normally defined in terms of 
volume, but the above equations use a poros-
ity defined in terms of mass. The relationship 
between the mass porosity and the volume 
porosity is:

Partition coefficients

Ol Opx Cpx Spinel

La 0.0003 0.002 0.053 0.01
Sm 0.0013 0.011 0.36 0.01
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perature increases with depth in the mantle, 
the solidus temperature (i.e., the temperature 
where melting begins) increases more rapidly, 
so that the deep mantle is generally well below 
its solidus.* Though they have played a very 
important role in the evolution of the Earth, 
magmas produced by melting of the deep 
mantle are very much rarer. So our discussion 
here will be limited to the melting process in 
the upper mantle. The phases present in the 
upper mantle, and their compositions, are dis-
cussed in more detail in Chapter 11, so we 
will omit that topic from the discussion here.

7.6.6.1 Relationship between melt fraction and 
temperature and pressure

We can shorten our list of variables if we can 
somehow relate the degree of melting to tem-
perature and ultimately to pressure. We can 
do this through a simplified thermodynamic 
analysis.

Most melting in the mantle, with the 
notable and important exception of subduc-
tion zones, appears to result from decompres-
sion: packets of mantle moving upward. 
Pressure in the Earth is related to depth, (h), 
by the simple relationship:

 dP
dh

g= ρ  (7.56)

where ρ is density and g is the acceleration of 
gravity. For a typical upper mantle density, 
pressure increases by about 1 GPa for every 
35 km depth.

Because of the scales generally involved 
(kilometers to hundreds of kilometers) and 
the low thermal conductivity of rock, it is 
reasonable to assume that a rising packet of 
mantle is adiabatic. As we learned in Chapter 
2, this means it can do work or have work 
done on it, but it does not exchange heat  
with its surroundings (i.e., dQ = 0). We also 
learned in Chapter 2 that an adiabatic system 
is an isoentropic one (i.e., dS = 0). The con-
straint that the system is isoentropic allows us 
to relate the amount of melting that will occur 
to the temperature and pressure of the rising 
mantle.

more depleted in incompatible elements than 
the residue of batch melting.

7.6.6 Constraints on melting models

To summarize the discussion above, we may 
say that the concentration of a trace element 
in a melt is a function of: (1) the solid phases 
(i.e., minerals) present in the system before 
and during melting; (2) the extent of melting 
(i.e., F); (3) the manner of melting (e.g., frac-
tional vs. batch); (4) the concentration of the 
element in the original solid (i.e., C°); and (5) 
the partition coefficients. The partition coef-
ficients, as we have seen, are functions of tem-
perature, pressure, and composition of the 
phases involved. Two tasks of trace element 
geochemistry are to deduce something about 
the melting process and about the composi-
tion of the source of magmas. If we are to use 
trace elements for these purposes, it is essen-
tial we independently constrain some of these 
variables.

Most magmas are generated by partial 
melting of the upper mantle. Although tem-
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Figure 7.23 Comparison of continuous and 
fractional melting for D = 0.0001 and 
ϕ = 0.01. The aggregate melt is similar in both 
cases when F is greater than about 2%. A 
separate curve for continuous melting is 
shown for ϕ = 0.001.

* Recent seismic studies suggest the possible presence of melt pockets in the lowermost mantle, near the core–
mantle boundary.
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where Sℓ and Ss are specific entropies of the 
melt and solid respectively and F is the frac-
tion of melt. If we solve eqn. 7.61 for F, we 
have:

 F
S S
S S

s

s
= −

−
0
!

 (7.62)

The term Sℓ − Ss is just entropy of melting, 
ΔSm, so eqn. 7.62 can be written as:

 F
S S

S

s

m

= −
∆
0  (7.63)

As long as the melt is not extracted, the system 
remains isoentropic and S0 is a constant; 
however, neither Sℓ nor Ss are necessarily con-
stant. Let’s assume for the moment that ΔSm 
is also constant (equivalent to assuming that 
Sℓ and Ss change in an identical way). If we 
now differentiate eqn. 7.63 with respect to 
pressure, we have:

The variation of entropy with temperature 
and pressure can be expressed as:

 dS
S
T

dT
S
P

dP
P T

= ∂
∂





 + ∂

∂




  (7.57)

Substituting eqns. 2.105 and 2.106 into eqn. 
7.57, we have:

 dS
C
T

dT VdPP= − α  (7.58)

Since the system is isoentropic, dS = 0, and 
we can solve eqn. 7.58 to obtain:
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This equation describes the adiabat, the P–T 
path that adiabatically rising mantle follows. 
(By the way, we can see that the adiabat will 
be curved, since its slope depends on T). The 
solidus temperature will also change with 
pressure, and its slope is given by the Clapey-
ron equation (eqn. 3.3):
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The slope of the solidus is steeper than that 
of the adiabat, so that rising mantle will even-
tually intersect the solidus (Figure 7.24). For 
simplicity, let’s assume the solid consists of a 
single phase. When the solidus is reached, the 
system will consist of two phases, solid and 
liquid, and we can write one version of eqn. 
7.57 for the solid and one version for any melt 
that has formed. Now let’s specify that the 
two phases coexist at equilibrium along a uni-
variant reaction curve, whose slope in T–P 
space is (dT/dP)2ϕ. We can solve eqn. 7.57 to 
determine how entropy of each phase changes 
with pressure, for example, for the solid:
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The total specific entropy (i.e., entropy per 
unit mass) of the system, So, can be expressed 
as the sum of the entropy of the solid and  
the melt.

 FS F S Ss! + − =( )1 0  (7.61)
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Figure 7.24 Representation of melting of an 
ascending packet of mantle in temperature 
and pressure space. Below the solidus, the 
mantle rises along the adiabat. Once the 
packet intersects the solidus, the T–P path of 
the mantle packet is deflected, as shown by 
the solid line marked T.
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This difference, Tpot − T is the temperature 
deflection due to melting in the P–T path and 
is shown in Figure 7.24. If we differentiate 
eqn. 7.70 with respect to P (and still holding 
S constant), we have:
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and finally:
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Solving for (∂T/∂P)S, we have:
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The term (∂Tpot/∂P)s is just the adiabatic gradi-
ent, given by eqn. 7.58, and substituting that 
into eqn. 7.72 we have:
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Equation 7.73 describes the P–T path that a 
system undergoing isoentropic melting will 
follow as it rises.

The degree of melting will be a function of 
excess temperature, that is, the difference 
between the solidus temperature and the 
actual temperature, which we shall call ΔT. In 
Figure 7.24, ΔT can be found by subtracting 
the solidus temperature from the temperature 
path of the mantle packet:
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There have been many attempts to deter-
mine the relationship between melting  
and temperature for mantle materials. Such 
melting curves are notoriously difficult to 
determine. Figure 7.25 shows an experimen-
tally determined melting curve for a peridotite 
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Equation 7.64 shows that even assuming that 
all the thermodynamic parameters therein  
are constant, the amount of melt produced  
by rising mantle will be a function of its 
temperature.

Once melting begins, the rising mantle 
follows a P–T path that is steeper than adia-
batic (Figure 7.24), since some energy is con-
sumed in melting. Let’s call the temperature 
that the system would have attained, had 
melting not occurred, the potential tempera-
ture, Tp. The difference between that tempera-
ture and the actual temperature T is related 
to the entropy change during melting, ΔSm. 
We can determine the entropy change due to 
the difference between T and Tp by integrat-
ing eqn. 2.105:

 ∆ = ∫S
C
T

dTP

T

Tp

 (7.65)

Since we are interested in a simple, approxi-
mate analysis, let’s assume that CP is constant. 
In that case, eqn. 7.65 becomes:

 ∆ =S C
T
T

p
pln  (7.66)

To find a simple linear solution, let’s approxi-
mate eqn. 7.66 with a Taylor series expansion 
about Tact, which yields:

 ∆ ≅ −S
C
T

T Tp
p( )  (7.67)

As long as melt has not been lost, the system 
remains isoentropic, so the entropy difference 
in eqn. 7.67 must simply be the entropy con-
sumed in melting:

 ∆ = ∆S S Fm  (7.68)

Equating the two, we have:

 ∆ ≅ −S F
C
T

T Tm
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p( )  (7.69)

Rearranging, and letting ΔT = (Tpot − T), we 
have:
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Rearranging:
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and finally:
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Equation 7.77 gives the melt fraction as a 
function of pressure above the pressure where 
the mantle intersects the solidus.

Let’s now attempt to evaluate eqn. 7.77 by 
substituting some real values into it. The term 
(∂T/∂P)F is the slope in T–P space of lines of 
constant melt fraction. We can make two sim-
plifying assumptions: (1) the lines of constant 
melt fraction are parallel to the solidus; and 
(2) the solidus can be adequately described by 
a Clapeyron slope, eqn. 3.3 (because the com-
position of both melt and solid can vary in 
the real mantle, the solidus will not be a 
simple univariant curve described by the Cla-
peyron equation), so eqn. 7.77 becomes:
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The coefficient of thermal expansion, α, is 
about 3 × 10−5 K−1, V is about 0.3175 cm3/g (= 
0.3175 JMPa−1g−1), and Cp is about 1.15 JK−1g−1. 
Thus the adiabatic gradient at 1673 K (1400°C) 
is about 12 K/GPa. The term (∂T/∂F)P is, of 
course, just the inverse of (∂F/∂T)P and has a 
value of 1/0.00285 = 350.88 K. ΔVm is about 
0.0434 cm3/g (0.0434 JMPa−1g−1) and ΔSm is 
about 0.362 JK−1 g−1, which corresponds to a 
slope of the solidus of about 120 K/GPa. From 
this we calculate a value for (∂F/∂P)S of about 
−0.12 GPa−1, or about −1.2%/kbar (it is nega-
tive because the extent of melt increases as 
pressure decreases). Of course, we have greatly 
simplified matters here by neglecting the pres-
sure and temperature dependencies of all  
thermodynamic functions. Thus this relation-
ship is only approximate, and considering  
the uncertainty in our assumptions and the 
thermodynamic parameters, this value could 

composition at 3.5 GPa. The curve has several 
breaks in slope that correspond to elimination 
of phases. Despite the kinks, one can extract 
from this kind of experiment a relationship 
between degree of melting and excess tem-
perature, that is, a value for (∂F/∂T)P. For 
example, Langmuir et al. (1993) adopted a 
value of about 0.00285 for (∂F/∂T)P below 
22% melting, and 0.0015 for (∂F/∂T)P above 
22% melting. We want to incorporate this 
information into our analysis. We do this as 
follows. First, we express the variation in tem-
perature as a function of melt fraction and 
pressure:
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If we differentiate eqn. 7.75 with respect  
to pressure, specifying that entropy be held 
constant, we can derive the following 
relationship:
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This can be substituted into eqn. 7.72 to 
obtain:
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Figure 7.25 Relationship between extent of 
melting, F, and temperature in peridotite at 
3.5 GPa determined experimentally in graphite 
capsules by Harrison (1979). Kinks in the 
curve correspond to consumption of phases, 
in the order garnet (gar), clinopyroxene (cpx), 
and orthopyroxene (opx).
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will also be an interfacial energy between  
the grains and the melt, σsm. If θ is the angle 
formed by a melt pocket at a grain triple  
junction, the balance of forces may be 
described as:

 σ σ θ
ss s= 2

2! cos  (7.79)

Rearranging, we have:
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and
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 (7.80a)

lie anywhere between −0.08/GPa and −0.2/
GPa. So, for example, if a rising packet of 
mantle intersects the solidus at 100 km depth 
(≈3 GPa), upon reaching a depth of 30 km 
(∼1 GPa) that packet would have undergone 
24% melting.

The solidus temperature of silicates can be 
substantially lowered by the addition of water 
and, at high pressures, of CO2. In the presence 
of either H2O or CO2, the melting curve will 
be different from that shown in Figure 7.24, 
and the relationship we deduced between 
melt, temperature, and pressure will also be 
different.

A final point to make is that once melt is 
extracted, the system is no longer isoentropic 
because the extracted melt carries away some 
of the entropy of the system. Thus our analy-
sis would be strictly limited to batch melting, 
where the melt remains in equilibrium with 
the solid. A complete treatment of the ther-
modynamics of melting, including fractional 
melting, can be found in Azimov et al. (1997). 
Morgan (2001) discusses the situation where 
the material undergoing melting is lithologi-
cally heterogeneous.

7.6.6.2 Mantle permeability and melt 
distribution and withdrawal

Whether the melting process approximates 
the batch (equilibrium) model or the frac-
tional model depends upon the permeability 
of the source region. If the source region is 
highly permeable, melt will flow out as it is 
created, approximating the fractional melting 
model; if it is impermeable, it will build up in 
place before ascending, approximating the 
equilibrium model. Permeability depends 
upon the degree to which the melt is intercon-
nected, and this in turn depends on the 
crystal–liquid interfacial energy.

We explored the effects of interfacial energy 
on nucleation in Chapter 5 (section 5.5.3.3). 
We found that the difference in interfacial 
energy determined the geometry of nuclea-
tion. Here we wish to consider the case of 
how a liquid will distribute itself between 
grains of a solid undergoing melting. We 
assume that the solid consists of a single phase 
(e.g., olivine) and that the interfacial energy 
between these grains is σss. Now consider 
the intersection between three such grains 
(Figure 7.26). When melt is present, there  
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Figure 7.26 Relationship between dihedral 
angle, θ, and melt distribution at grain triple 
junctions. (a) The balance of solid–solid and 
solid–liquid interfacial energies, σss and σsl, at 
the junction. (b) θ = 0, and the melt (shaded) 
is distributed along grain–grain boundaries as 
well as triple junctions. (c) The melt forms an 
interconnected network along grain triple 
junctions. (d) θ is greater than 60° and melt is 
present only at 4-grain junctions. After 
Kingery (1960) and Kohlstedt (1993).
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melting will be high. From our perspective, 
this means melt is likely to be extracted fairly 
quickly after it is created, and that very small 
melt fractions, perhaps as low as 0.1%, can 
segregate from the mantle. Thus the fractional 
melting model may more closely approximate 
melting in the mantle.

Laporte (1994) carried out similar experi-
ments with quartz and hydrous silicate melts 
and found that the dihedral is in the range of 
12–18°, indicating a high ratio of σss/σsl. This 
in turn indicates that the permeability within 
regions of the crust undergoing melting will 
be relatively high. However, the rate at which 
melt segregates from its source depends upon 
melt viscosity as well as permeability. Because 
the viscosity of even hydrous granitic magmas 
is four orders of magnitude greater than that 
of basalt, segregation of granitic melt requires 
a higher melt fraction than does segregation 
of basaltic melt. Nevertheless, Laporte argued 
that melt fractions as low as 10% will segre-
gate on time-scales of 105 yrs, whereas it had 

The bottom line is that the lower the solid–
liquid interfacial energy, the more extensively 
melt will interconnect (the more extensively 
grains will “wet”) and the more readily melt 
will flow. Considering eqn. 7.80 in greater 
detail reveals that, depending on the value of 
θ, the melt can distribute itself in number of 
ways. These are illustrated in Figure 7.26. 
The first case occurs when the solid–solid 
interfacial energy is twice that of the solid–
melt interfacial energy; if so, then cos θ/2 = 1 
and θ ≈ 0. In this case, solid–solid interfaces 
are energetically unfavorable and melt will 
form a thin film that coats all grain bounda-
ries (Figure 7.26b). The second case is where 
the solid–solid interfacial energy is more than 
1.73 times but less than twice that of the 
solid–melt interfacial energy (2σsl > σss > 
1.73σsm), which corresponds to 0 < θ < 60° 
(Figure 7.25c). In this case, the melt will 
form interconnected channels along grain 
triple junctions, as is illustrated in Figure 
7.26, but is absent from grain–grain surfaces. 
The third case corresponds to σss < 1.73σsl 
and θ  > 60° (Figure 7.25d). In this case, 
melt forms isolated pockets at junctions 
between 4 or more grains but is absent else-
where. These pockets become connected only 
at relatively high melt fractions (several 
percent). Permeability will be high for the 
first two cases where melt forms films or 
channels that allow melt to flow, but low for 
the last case of isolated melt pockets. The 
interfacial energy, and hence θ, depends upon 
temperature, pressure, and the composition 
of the melt and solid phase, and hence will 
vary even within a single rock.

Scanning electron microscopy of experi-
ments in which basaltic melt is allowed to 
come to textural equilibrium with olivine 
indicate that θ is characteristically between 
25° and 50°. The dihedral angle is larger, typi-
cally greater than 60°, for junctions between 
pyroxene grains and for H2O and CO2 fluids 
(though addition of water to a silicate rock 
reduces θ). Since the upper mantle consists of 
over 60% olivine, however, it is likely that 
melt forms an interconnected network such as 
that illustrated in Figure 7.27, resulting in 
high permeability. Experiments in which melt 
is induced to migrate, either as a result of a 
gradient in melt fraction in the experimental 
charge or as a result of stress, confirm that 
permeability of mantle material undergoing 

Figure 7.27 Three-dimensional network 
formed by melt along triple junctions of 
olivine grains. From Riley and Kohlstedt 
(1990). With permission from Elsevier.
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these caveats, however, the diagenetic equa-
tion (eqn. 5.154) may be directly applicable 
to the melting process.

Unfortunately, a truly thorough quantita-
tive treatment of the melting process has not 
yet been undertaken. In one of the more thor-
ough discussions to date, Langmuir et al. 
(1993) concluded that despite the complexity 
of the melting process, the batch melting 
equation gives a reasonably good approxima-
tion of incompatible element concentrations 
in the melt as a function of the average degree 
of melting. Beneath mid-ocean ridges, the 
average degree of melting will be less than the 
maximum degree of melting, because differ-
ent parcels of mantle follow different paths. 
Only mantle directly beneath the ridge is able 
to rise the maximum amount, and hence melt 
the maximum amount. In the simple case 
illustrated in Figure 7.28a, the average extent 
of melting is one half the maximum extent. 
Other ratios are possible for other models of 
mantle flow.

There are two situations where batch 
melting may not be a good approximation  
of incompatible element concentrations. The 
first is where there is a large volume of mantle 
from which only very low degree melts are 
extracted. This situation might arise as a 
result of suppression of the solidus by H2O or 
CO2 fluid, a well-established phenomenon. If 
melting is such that a small fraction of melt, 
say 0.1% or so, is generated between the “wet 
solidus” (i.e., H2O or CO2 present) and the 
“dry solidus” and the temperature range 
between the two is large, there could be a 
large region at great depth where very small 
degree melts are produced (Figure 7.28b). 
Mixing of these small degree melts with larger 
degree ones produced above the dry solidus 
then results in melt compositions different 
from those predicted by the batch melting 
equation (Plank and Langmuir, 1992). The 
second situation occurs when there is a phase 
change within the melting region. For example, 
spinel is replaced by garnet as the aluminous 
phase in the mantle at about 60–90 km depth. 
These two minerals have very different parti-
tion coefficients for some elements (Table 
7.5), hence melts produced in the garnet sta-
bility region will have different incompatible 
element concentrations (and in particular, dif-
ferent rare earth patterns) than those in the 
spinel stability region.

been previously believed that melt fractions as 
high as 30% would not segregate on reason-
able geologic time-scales.

7.6.6.3 Realistic models of mantle melting

As we pointed out above, in most circum-
stances melting in the mantle occurs because 
of decompression. (A possible exception is in 
subduction zones; here the generation of melt 
is still poorly understood, but may ultimately 
be due to hydration of the mantle wedge. Ad-
dition of water lowers the melting tempera-
ture, so this is a form of flux melting.) 
Decompression melting is necessarily a dy-
namic process: a parcel of mantle will begin 
to melt at some depth and will continue to 
melt as it rises. The fraction of melt produced 
will increase with height above the initial 
melting depth. If, as we have argued above, 
melt segregates readily, melt will rise faster 
than the solid. As a result, once the parcel of 
mantle has risen above the depth where melt-
ing begins, melt from below will continually 
stream through it. The melt entering the parcel 
from below will initially not be in equilibrium 
with the solid within the parcel, having been 
produced as a smaller melt fraction at greater 
depth (and hence greater pressure and tem-
perature). Thus melt passing through the 
parcel will react with the solid in an attempt 
to reach equilibrium with it. This is similar  
to the process we described above as zone 
refining.

The situation then is analogous to dia-
genesis in sediments, which we discussed  
in Chapter 5. There are some differences, 
however. In diagenesis, the fraction of solid 
relative to fluid does not change, except 
through expulsion of fluid. In the melting 
process, solid is converted to fluid by nature 
of the process. In the melting process, length 
scales are such that diffusion does not signifi-
cantly contribute to the flux and bioturbation 
does not exist, so advection is the only signifi-
cant flux. Furthermore, our reduction of the 
problem to one dimension by assuming lateral 
uniformity will not be valid for the melting 
process. This is because the extent of melt will 
also decrease with distance from the some 
central point (a point under a volcano or 
under a spreading mid-ocean ridge), and 
because melt will be focused in from these 
peripheral regions toward the center. With 
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rium throughout the crystallization. If we 
define X as the fraction of material crystal-
lized, then
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where Cℓ is the concentration in the remaining 
liquid and C° is the concentration in the origi-
nal liquid (we derive this equation in a manner 
exactly analogous to eqn. 7.42). The limit of 
trace element enrichment or depletion occurs 
when X = 1, when Cl/Co = 1/D. Equilibrium 
crystallization requires the liquid keeps in 
contact with all crystals. Crystal interiors 
would have to maintain equilibrium through 
solid state diffusion, a slow process. Thus 
equilibrium crystallization is probably rele-
vant only to a limited range of situations, such 
as the slow crystallization of an intrusion.

7.7.2 Fractional crystallization

Fractional crystallization, which assumes only 
instantaneous equilibrium between solid and 
liquid, is a more generally applicable model 
of crystallization. In this case, trace element 
concentrations in the melt are governed by:
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There is no limit to the enrichment or deple-
tion of the liquid in this case. If D is very 
large, Cℓ/Co approaches 0 as X approaches 1, 
and it approaches ∞ as X approaches 1, if D 
is very small. What happens when D = 0?

For multiphase crystallization, we need to 
replace D in eqns. 7.81 and 7.82 with the 
bulk distribution coefficient as we defined it 
in eqn. 7.46, where mϕ in that equation would 
become the fraction of phase ϕ in the crystal-
lizing mass.

Though fractional crystallization can, in 
principle, produce extreme trace element 
enrichment, this rarely occurs. A melt that  
has crystallized 90% or more (which would 
produce a ten-fold enrichment of a perfectly 
incompatible element in the melt) would have 
major element chemistry very different from 
its parent. From our knowledge of the com-
positional dependence of partition coeffi-
cients, we could predict that incompatible 

7.7 TRACE ELEMENT DISTRIBUTION 
DURING CRYSTALLIZATION

7.7.1 Equilibrium crystallization

Equilibrium crystallization occurs when the 
total liquid and total solid remain in equilib-

Figure 7.28 (a) Melting regime under a 
mid-ocean ridge. Red lines show the flow of 
mantle induced by passive spreading of 
overlying plates. Since melting results from 
decompression, no further melting occurs 
once motion becomes horizontal. Only those 
parts of the mantle directly under the ridge 
reach the maximum extent of melting. The 
melting regime along-ridge can be assumed to 
be uniform parallel to the ridge, hence the 
process is two-dimensional. The cartoon is, 
however, readily adapted to mantle-plume 
related volcanism by assuming radial 
symmetry. (b) Low-degree melts generated 
between the “wet” and “dry” solidi could 
enrich higher degree melts from the normal 
mantle column (light shading) in highly 
incompatible elements. However, the volume 
of this region must be large (typically 10 
times that of the normal mantle column) for 
this to be effective, requiring efficient 
transport and focusing of melt over scales of 
hundreds of kilometers. Adapted from Plank 
and Langmuir (1992).




