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A little more rearranging and we have:
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Finally, since ν = ν+ + ν−, we obtain:
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We can recognize the last term as m±. Since 
a± = γ±m±, we see that the mean ionic activity 
coefficient will be
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for an incompletely dissociated electrolyte. 
Thus the mean ion activity coefficients are 
reduced by a factor of 1 − α. Provided we 
have appropriate stability constants for the 
ion pairs or complexes, α can be calculated 
and an appropriate correction applied.

Now consider a CaSO4 solution of which 
some fraction of the Ca2+ and SO4

2− ions, α, 
associate to form CaSO4

0. The ionic strength 
of the this solution would be
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Thus the ionic strength is reduced by a factor 
of 1 − α as well.

Ion pairs and complexes need not be neutral 
species (AlCl2+, for example). When they are 
not, they will contribute to ionic strength. A 
general expression for ionic strength taking 
account of ion associations must include 
charged ion pairs and complexes:
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where αi is the fraction of each ion involved 
in ion associations, cn is the concentration of 
each ion pair or complex, and zn is its charge. 
We could use this result directly in the Debye–
Hückel equation to make an improved esti-
mate of ionic strength, and hence of the single 
ion activity coefficient.

Figure 4.29 illustrates the effect of ion pair 
formation for a hypothetical CaCl2 solution 
in which some fraction of the ions combine 
to form ion pairs. The fraction of Ca2+ ions 

sphere ion pair (also called an outer sphere 
complex) is said to have formed. If water 
molecules are excluded from the space 
between the ions, an inner sphere ion pair (or 
complex) is said to have formed.

For some purposes, ion pairs can be treated 
as distinct species having a charge equal to the 
algebraic sum of the charge of the ions 
involved. These can be included, for example, 
in calculation of ionic strength to obtain a 
somewhat more accurate estimate of activi-
ties. On the other hand, ion pairs, including 
neutral ones, can be highly dipolar and may 
behave as charge-separated ions.

Ion associations affect activities in two 
ways. First, associated ions are less likely to 
participate in reactions, thus reducing the 
activity of the ions involved. Second, ion asso-
ciation reduces the ionic strength of the solu-
tion, and hence reduces the extent of 
electrostatic interactions among ions. This 
has the effect of increasing activity. To under-
stand the first effect, consider the case where 
a certain fraction of the free ions re-associates 
to form ion pairs:

 ν ν ν ν
+ + − −+ + −A A A Bz z

aq" ( )0

where the superscript 0 indicates neutrality 
and the subscript aq a dissolved aqueous 
species. A salt that only partially dissociates 
in solution is called a weak electrolyte. Let α 
be the fraction of the ions that associate to 
form ion pairs or complexes. The associate of 
this fraction of ions as ion pairs will be ther-
modynamically equivalent to that fraction of 
the substance not dissociating to begin with. 
The fraction of free ions is then 1 − α. Equa-
tion 4.83 becomes:

 m m m m+ += − = −( ) ( )1 1α ν α νand  
(4.99)

where m is the molality of the solute. We can 
rewrite eqn. 4.77 as:
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Substituting 4.99 into 4.100 and rearranging, 
we obtain:
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Brønsted (1922). Brønsted proposed an equa-
tion of the form:

 log /γ α βi im m= +1 2  (4.104)

where α is a constant that is independent of 
the solute ions and β is the “specific ion inter-
action parameter” and is different for each 
ionic species. Guggenheim (1935) replaced 
the first term on the right with a simplified 
form of the Debye–Hückel equation and the 
second term with the summation of ion-ion 
interaction parameters:
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where βi,k is a parameter describing the inter-
actions between ions i and k. For natural 
waters with many species, the Guggenheim 
equation becomes complex. Also starting 
from Debye–Hückel, Truesdell and Jones 
(1974) proposed the following simpler 
equation:
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The first term on the right is identical in form 
to Debye–Hückel; the second term is similar 
to the Brønsted specific ion interaction term. 
Truesdell and Jones determined parameters  
å and b empirically. Table 4.5 lists these 
parameters for some common ions (see 
Example 4.7). Figure 4.30 compares mean 
activity coefficient of calculated with the 

forming CaCl− was assumed to increase line-
arly with ionic strength up to the maximum 
value shown.

If the formation of ion pairs depends on the 
ratio of thermal to electrostatic energy, we 
might expect that ion pair formation will 
decrease with temperature. However, the rela-
tive permittivity of water decreases with tem-
perature, allowing increased electrostatic 
interaction between ions, and this effect dom-
inates over the increased thermal energy of 
ions. As a result, the extent of ion association 
increases with temperature. Increasing pres-
sure, on the other hand, favors dissociation of 
ions.

4.7.2.4 Alternative expressions for activity 
coefficients

There have been a number of attempts to 
develop working equations that account for 
all the effects on activity coefficients at high 
ionic strength. Many of these are ultimately 
based on the specific ion interaction theory of 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5
I (apparent)

γ±

αmax= 0.4 

αmax= 0

αmax= 0.2

Table 4.5 Truesdell–Jones parameters. From 
Truesdell and Jones (1974).

Ion å b

Na+ 4.0 0.075
K+ 3.5 0.015
Mg2+ 5.5 0.20
Ca2+ 5.0 0.165
Cl− 3.5 0.015
SO4

2− 5.0 −0.04
CO3

2− 5.4 0
HCO3 5.4 0

Figure 4.29 Effects of ion association on the 
activity coefficient. Mean ion activity 
coefficient of CaCl2 for varying extents of ion 
association. Fraction of Ca2+ ions forming 
CaCl− was assumed to increase linearly with 
ionic strength up to a maximum value (αmax) 
at I = 5 m. Solid line shows electrostatic term 
(Debye–Hückel) after correction for ion 
association, dashed line shows the combined 
electrostatic and solvation term.
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Debye–Hückel, Davies, and Truesdell–Jones 
equations with the actual measured values. 
Generally, the Truesdell–Jones equations  
fit these observations very well. This is not 
always the case, however. The fit for Na2CO3, 
for example, is little better than for 
Debye–Hückel.

Other equations include those developed 
by Pitzer (1979) and the National Bureau  
of Standards. While these equations are  
generally more accurate than the above, their 
complexity places them beyond the scope of 
this book. The interested reader is referred  
to any of several texts on geochemical ther-
modynamics that treat them (Nordstrom  
and Munoz, 1986; Fletcher, 1993; Anderson  
and Crerar, 1993) as well as the original 
literature.
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Figure 4.30 Measured mean ionic activity 
coefficients in MgCl2 solution as a function of 
ionic strength, compared with values 
calculated from the Debye–Hückel, Davies 
and Truesdell–Jones equations.

Example 4.7 Activity coefficients in a brine

The following concentrations were measured in a shield brine from Sudbury, Canada, at 22°C. 
Calculate the activity coefficients of these species using the Truesdell–Jones equation.

Answer: Our first task is to convert g/kg to molal concentrations. We do this by dividing by 
molecular weight. Next, we need to calculate ionic strength (eqn. 3.75), which we find to be 5.9 m. 
Calculation of activity coefficients is then straightforward using eqn. 4.106 and the parameters in 
Tables 3.2 and 4.5. Finally, we apply a correction for the decreased concentration of water (eqn. 
4.95). Our final spreadsheet is now shown.

Species Conc. g/kg

Na 18.9
K 0.43
Ca 63.8
Mg 0.078
SO4 0.223
HCO3 0.042
Cl 162.7

‰ m z å_TJ B_TJ log (gamma) ganma gamma corr

Na 18.9 0.822 1 5 0.165 0.728 5.341 4.741
K 0.43 0.017 1 3.5 0.015 −0.238 0.579 0.514
Ca 63.8 1.595 2 5 0.165 −0.017 0.963 0.855
Mg 0.078 0.003 2 5.5 0.2 0.264 1.836 1.630
SO4 0.223 0.002 2 5 −0.04 −1.229 0.059 0.052
HCO3 0.058 0.001 1 5.4 0 −0.233 0.585 0.519
Cl 162.7 4.590 1 3.5 0.015 −0.238 0.579 0.514

m 7.030 A 0.5092
I 5.913 B 0.3283
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PROBLEMS

1. Kyanite, andalusite, and sillimanite (all polymorphs of Al2SiO5) are all in equilibrium at 
500°C and 376 MPa. Use this information and the table to construct an approximate 
temperature–pressure phase diagram for the system kyanite-sillimanite-andalusite. Assume 
ΔV and ΔS are independent of temperature and pressure. Label each field with the phase 
present.

ϕ
V
(cm3)

S
(J/K-mol)

Kyanite 44.09 242.30
Andalusite 51.53 251.37
Sillimanite 49.90 253.05

2. Show that: G W X W X X Xexcess G G= +( )1 22 1 1 2  may be written as a four-term power expansion, 
i.e.:

G A BX CX DXex = + + +2 2
2

2
3

3. Construct G-bar–X diagrams for a regular solution with W = 12 kJ (W is the interaction 
parameter in a non-ideal solution) at 100°C temperature intervals from 200 to 700°C. 
Sketch the corresponding phase diagram.

4. Interaction parameters for the enstatite–diopside solid solution have been determined as 
follows: WH-En = 34.0 kJ/mol, WH-Di = 24.74 kJ/mol (assume WV and WS are 0).

(a) Use the asymmetric solution model to calculate ΔGreal as a function of X2 (let diopside 
be component 2) curves for this system at 100 K temperature intervals from 1000 K to 
1500 K. Label your curves.

(b) What is the maximum mole fraction of diopside that can dissolve in enstatite in this 
temperature range?

(c) Sketch the corresponding T–X phase diagram.

5. Sketch G-bar–X diagrams for 1600°C, 1500°C, 1300°C, and 1250°C for the system diopside–
anorthite (Figure 4.8). Draw tangents connecting the equilibrium liquids and solids.
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Sample
glass (liquid) composition

TR3D-1
(wt % oxide)

DS-D8A
(wt % oxide)

SiO2 50.32 49.83
Al2O3 14.05 14.09
ΣFe as FeO 11.49 11.42
MgO 7.27 7.74
CaO 11.49 10.96
Na2O 2.3 2.38
K2O 0.10 0.13
MnO 0.17 0.20
TiO2 1.46 1.55
Olivine
Mole % Fo (= mole % Mg) 79 81

Titanomagnetite s.s. phase
mole % magnetite

Ilmenite s.s. phase
mole % hematite

G-4 groundmass 29.0 10.3
SJ-8 phenocrysts 41.9 13.0
SM-28 microphenocrysts 54.5 7.0
T-8 groundmass 33.7 8.1
F-29 microphenocrysts 36.2 6.0

6. Suppose you conduct a 1 atm melting experiment on a plagioclase crystal. Predict the mole 
fractions of anorthite in the liquid and solid phases at a temperature of 1425°C. Assume 
both the liquid and solid behave as ideal solutions. Albite melts at 1118°C, anorthite at 
1553°C. ΔHm for albite is 54.84 kJ/mol; ΔHm for anorthite is 123.1 kJ/mol.

7. Given the following two analyses of basaltic glass and coexisting olivine phenocrysts, deter-
mine the KD for the MgO W FeO exchange reaction, and calculate the temperatures at which 
the olivine crystallized using both MgO and FeO. Assume Fe2O3 to be 10 mole % of total 
iron (the analysis includes only the total iron, calculated as FeO; you need to calculate from 
this the amount of FeO by subtracting an appropriate amount to be assigned as Fe2O3). 
Note that the mole % Fo in olivine is equivalent to the mole % Mg or MgO. (HINT: you 
will need to calculate the mole fraction of MgO and FeO in the liquid.)

8. Starting from equations 4.54, 4.56 and 4.18, use the fundamental relationships between free 
energy, entropy, enthalpy, and the equilibrium constant to derive the temperature dependence 
of the titanomagnetite–ilmenite exchange (eqn. 4.57).

9. Determine the temperature and oxygen fugacity of equilibration for the following set of 
coexisting iron-titanium oxides in lavas from the Azores:

Make a plot of fO2 vs. temperature using your results and compare with Figure 3.22. What 
buffer do the data fall near?

10. Average mid-ocean ridge basalt (MORB) has the composition in the table to the right. Use 
the “web applet” version of melts (http://melts.ofm-research.org/index.html) to answer the 
following questions.

(a) At a pressure of 500 bars and fO2 = FMQ-1, what is the liquidus temperature of this 
magma?

http://melts.ofm-research.org/index.html
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(b) If this magma cools and undergoes fractional crystallization of solid phases to a tem-
perature of 1100°C, what would be the composition of the remaining magma? What 
fraction of liquid would remain?

(c) If instead the oxygen fugacity were FMQ+1, what would be the composition of the 
remaining magma at 1100°C? How much liquid would remain?

Oxide Weight percent

SiO2 50.37
TiO2 1.44
Al2O3 15.38
Fe2O3 1.10
FeO 8.94
MnO 1.10
MgO 7.92
CaO 11.51
Na2O 2.70
K2O 0.18
P2O5 0.15
H2O 0.15

SiO2 58.12% TiO2 0.92%
Al2O3 16.47% Fe2O3 1.82%
MgO 5.62% FeO 9.94%
CaO 7.11%

Conc
g/kg

Na+ 63.00
K+ 6.15
Mg2+ 2.77
Ca2+ 44.6
Cl− 200.4
SO4

2− 0.13
HCO3

− 0.03

11. For a melt having a composition, in wt %, of:

use the Ghiorso regular solution model and the interaction parameters in Table 4.3 to:

(a) calculate the Gex and ∆Gmixing for this composition at 1300°C.
(b) calculate the activity of Si4O8 at this temperature.

12. An analysis of an oil field brine from Mississippi with a temperature of 150°C is shown 
here. Calculate the activities of these species at that temperature using the Truesdell–Jones 
equation.

Problem 12

13. Show that for a strong electrolyte, i.e., one in which dissociation is complete and:

m m m m− + += =ν ν– and
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where m is the molality of the solute component A Bν ν+ −, that:

m m± + −= + −( ) /ν νν ν ν1

where ν = ν+ + ν−.

I, m
γ±
observed

0.001
0.003 0.887
0.006 0.847
0.01
0.015 0.78
0.03 0.716
0.06 0.644
0.1
0.15 0.541
0.3 0.462
0.6 0.385
1
1.5 0.292
3 0.229
6 0.182

14. Mean ionic activity coefficients were measured for the following solutions at an ionic 
strength of 3: γKCl = 0.569, γNaCl = 0.734, γ Na CO2 3 0 229= . . Assuming γ γ γCl K KCl− += = ± , what 
is the activity coefficient of CO3

2−?

15. Calculate the electrostatic, γelect, and solvation, γsolv, contributions to the mean ionic activity 
coefficient of MgCl2 at concentrations of 0.0033, 0.01, 0.033, 0.05, 0.1, 0.33, 0.5, and 1 
using the Debye–Hückel (eqn. 3.74) and Robinson and Stokes (eqn. 4.95) equations, respec-
tively. Plot your results, as well as γelect+solv = γelect

*γsolv as a function of ionic strength (i.e., a 
plot similar to Figure 4.27).

16. Calculate the mean ionic activity coefficient for NaCO3 using the Debye–Hückel and 
Truesdell–Jones equations and compare your results with the observed values shown here. 
Overall, which fits the data better?



Chapter 5

Kinetics: the pace of things

5.1 INTRODUCTION

Thermodynamics concerns itself with the dis-
tribution of components among the various 
phases and species of a system at equilibrium. 
Kinetics concerns itself with the path the 
system takes in achieving equilibrium. Ther-
modynamics allows us to predict the equilib-
rium state of a system. Kinetics, on the other 
hand, tells us how and how fast equilibrium 
will be attained. Although thermodynamics is 
a macroscopic science, we found it often useful 
to consider the microscopic viewpoint in devel-
oping thermodynamics models. Because kinet-
ics concerns itself with the path a system takes, 
what we will call reaction mechanisms, the 
microscopic perspective becomes essential, and 
we will very often make use of it.

Our everyday experience tells one very 
important thing about reaction kinetics: they 
are generally slow at low temperature and 
become faster at higher temperature. For 
example, sugar dissolves much more rapidly 
in hot tea than it does in ice tea. Good instruc-
tions for making ice tea might then incorpo-
rate this knowledge of kinetics and include 
the instruction to be sure to dissolve the sugar 
in the hot tea before pouring it over ice. 
Because of this temperature dependence of 
reaction rates, low-temperature geochemical 
systems are often not in equilibrium. A good 
example might be clastic sediments, which 
consist of a variety of phases. Some of these 
phases are in equilibrium with each other and 
with porewater, but most are not. Another 
example of this disequilibrium is the oceans. 

The surface waters of the oceans are every-
where oversaturated with respect to calcite, 
yet calcite precipitates from seawater only 
through biological activity. At a depth of 
2500 m, the ocean is undersaturated with 
calcite, yet calcite shells of micro-organisms 
persist in sediments deposited at these depths 
(though they do dissolve at greater depths). 
Thus, great care must be used in applying 
thermodynamics to such systems. Even in the 
best of circumstances, thermodynamics will 
provide only a limited understanding of low-
temperature geochemical systems. A more 
complete understanding requires the applica-
tion of kinetic theory. Indeed, for such systems, 
kinetics is the deciding factor controlling their 
state and evolution. Even in metamorphic 
systems, with temperatures in the range of 300– 
700°C, kinetics factors are crucially impor-
tant in determining their final states.

High-temperature geochemical systems, 
such as magmas, are more likely to be in 
equilibrium, and thermodynamics provides a 
reasonable understanding of these systems. 
However, even at high temperatures, kinetic 
factors remain important and can inhibit 
equilibrium. One obvious example of disequi-
librium at high temperature is the formation 
of volcanic glasses. Thermodynamics predicts 
that magmas should crystallize as they cool. 
But where cooling is rapid enough, this does 
not occur. Glasses, which in many ways are 
simply extremely viscous liquids, form instead.

It is perhaps ironic that it is kinetic factors, 
and a failure to achieve equilibrium, that in 
the end allow us to use thermodynamics to 

Geochemistry, First Edition. William M. White.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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CaAl Si O H O H

Si Al O OH Ca aq

2 2 8 2

2 2 5 4
2

2+ +
→ +

+

+( ) ( )
 (5.4)

H O Si Al O OH SiO Al OHqz2 2 2 5 4 2 32 2+ → +( ) ( )( )

(5.5)

 HCO CO Haq aq3 3
2

( ) ( )
− − +→ +  (5.6)

 CO Ca CaCOaq aq3
2 2

3( ) ( )
− ++ →  (5.7)

In thermodynamics, eqn. 5.1 is a perfectly 
adequate description of the reaction. In kinet-
ics, a description of an overall reaction, such 
as 5.1, requires knowledge of the path taken, 
that is, a knowledge of the steps involved. 
Reactions 5.2 through 5.7 thus describe the 
overall reaction 5.1. Reactions 5.2, 5.3, and 
5.6 are elementary reactions in that they 
involve only one step and the reaction as 
written describes what occurs on the micro-
scopic level. The remaining reactions are not 
elementary in that they each consist of a 
number of more elementary steps.

5.2.2 Reaction mechanisms

Reaction 5.4 describes the breakdown of 
anorthite to form kaolinite plus a free calcium 
ion. This reaction involves profound struc-
tural changes in the solid phase that are not 
described by eqn. 5.4. A full kinetic descrip-
tion of 5.4 will require some knowledge of the 
steps involved in these structural changes. 
One possibility is that all components are in 
solution at an intermediate state:

 

CaAl Si O H O H

H SiO Al OH

Ca OH
aq aq

aq

2 2 8 2

4 4 2

2

6 2

2 2

2

+ +
→ +
+ +

+

+

+

( ) ( )

( )

( )
−−

 (5.4a)

 
2 2 2

5
4 4 2

2 2 5 4 2

H SiO Al OH OH

Si Al O OH H O
aq aq( ) ( )( )

( )

+ +
→ +

+ −

 (5.4b)

Reaction 5.5, the breakdown of kaolinite to 
quartz and gibbsite, could involve SiO2 dissolv-
ing, subsequently precipitating as opaline silica, 
and later transforming to quartz:

 
Si Al O OH H O

H SiO Al OHaq

2 2 5 4 2

4 4 3

5
2 2

( )
( )( )

+
→ +  (5.5a)

 H SiO SiO H Oaq opal4 4 2 22( ) ( )→ +  (5.5b)

 SiO SiOopal qz2 2( ) ( )→  (5.5c)

make statements about the Earth’s interior. As 
we pointed out in the preceding chapter, if 
equilibrium were always achieved, the only 
rocks we could collect at the surface of the 
Earth (which is, after all, the only place we 
can collect them) would consist of quartz, 
clays, serpentine, and so on; their petrology 
would tell us nothing about their igneous or 
metamorphic histories. Fortunately, kinetic 
factors allow the original minerals and tex-
tures of gneisses, peridotites, and lavas to be 
preserved for our study.

The foregoing might suggest that kinetics 
and thermodynamics are entirely unrelated 
subjects, and further, that what we have 
learned about thermodynamics is of little use 
in many instances. This is certainly not the 
case. As we shall see, transition state theory 
provides a very strong link between kinetics 
and thermodynamics. What we have learned 
about thermodynamics will prove very useful 
in our brief study of kinetics. Furthermore, 
chemical systems are always governed by a 
combination of thermodynamics and kinetics, 
so a full understanding of the Earth requires 
the use of both thermodynamic and kinetics 
tools. The goal of this chapter is to add the 
latter to our geochemical toolbox.

5.2 REACTION KINETICS

5.2.1 Elementary and overall reactions

In thermodynamics, we found that the equi-
librium state of a system is entirely independ-
ent of the path taken to reach that state. The 
goal of kinetics is a description of the manner 
in which the equilibrium state is achieved. 
This description is inherently path-dependent. 
Consider, for example, the weathering of 
anorthite. We can write an overall reaction 
for this process as:

CaAl Si O H O CO

CaCO Al OH SiO
g

qz

2 2 8 2 2

3 3 2

3

2 2

+ +
→ + +

( )

( )( )
 (5.1)

In nature, however, this process will involve 
several intermediate steps. These intermediate 
steps can include:

 H O CO H COg aq2 2 2 3+ →( ) ( )  (5.2)

 H CO HCO Haq2 3 3→ +( )
+–  (5.3)
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The brackets denote the concentrations of the 
species and the negative sign indicates that 
reactants are consumed as the reaction pro-
ceeds. Thus the rate of a reaction is simply 
the rate at which a reactant is consumed or 
product produced divided by its stoichiomet-
ric coefficient.

5.2.3.1 The reaction rate for an elementary reac-
tion: composition dependence

Reaction rates will, in general, depend on the 
concentration of the reactant. To understand 
this, consider the reaction:

 N O NO O° + +2 !  (5.8)

This reaction between free nitrogen atoms 
and oxygen molecules occurs in the strato-
sphere (where N° is produced by high-energy 
collisions involving N2) and contributes to the 
production of nitrous oxide. Let’s assume that 
reaction 5.8 is an adequate description of this 
reaction. In other words, we are assuming 
that 5.8 is an elementary reaction, and the 
reaction mechanism for the production of NO 
from nitrogen and oxygen gas is collision of 
a N° molecule and O2 molecule. For the reac-
tion to occur, the nitrogen and oxygen mole-
cules must collide with enough kinetic energy 
that the mutual repulsion of the electron 
clouds is overcome and the electrons can be 
redistributed into new covalent orbits. The 
repulsive force represents an energy barrier, 
EB, which will prevent low-energy nitrogen 
and oxygen atoms from reacting. Figure 5.1 
illustrates this point. The reaction rate will 
therefore depend on (1) the number of colli-
sions per unit time, and (2) the fraction of N 
and O molecules having energy greater than 
the barrier energy.

Let’s first consider the number of collisions 
per unit time. In order for a “collision” to 
occur, the electron clouds must overlap, that 
is, they must approach within ( )r rN O+ 2 , where 
rN and rO2 are the radii of the nitrogen and 
oxygen molecules. To make things simple, 
imagine the oxygen to be fixed and the nitro-
gen in motion. In other words, our reference 
frame will be that of the oxygen molecules. 
We can imagine the nitrogen sweeping out a 
cross-section with radius ( )r rN O+ 2  as it travels. 
If the nitrogen is travelling at velocity v, in 

The description of an overall reaction  
in terms of elementary reactions is called  
the reaction mechanism. The rates of truly 
elementary reactions are path-independent 
because there is only one possible path. In this 
sense, elementary reactions are somewhat 
analogous to state functions in thermodynam-
ics. Clearly then, an important step in any 
kinetic study is determination of the reaction 
mechanism, that is, to describe the process in 
terms of elementary reactions. As we shall see, 
there may be more than one possible path for 
an overall reaction, and several paths may be 
simultaneously involved. Kinetics can only 
provide an accurate description of a process 
if all these paths are known.

5.2.3 Reaction rates

Consider a reaction such as the precipitation 
of dolomite from a solution. We can describe 
this as:

Ca Mg CO CaMg CO2 2
3
2

3 22+ + −+ + ! ( )

We define the rate of this reaction, ℜ, as the 
rate at which dolomite is produced:

ℜ ≡ d
dt

[ ( ) ]CaMg CO3 2

Clearly, if dolomite is to be formed, CO3
2−

must be consumed in this reaction twice as 
fast as Ca or Mg. For every mole of Ca or Mg 
consumed, exactly two moles of CO3

2− will 
also be consumed and one mole of dolomite 
produced. This being the case, we could 
equally well express the reaction rate as:

ℜ = −
−1

2
3
2d

dt
[ ]CO

or

ℜ = − = −
+ +d

dt
d

dt
[ ] [ ]Ca Mg2 2

We can now formulate the general rule. For 
any reaction such as:

 a b c dA B C D+ → +  (5.6)

The reaction rate, ℜ, is defined as the change in 
composition of the reaction mixture with time:

 ℜ ≡ − = − = =1 1 1 1
a

d
dt b

d
dt c

d
dt d

d
dt

[ ] [ ] [ ] [ ]A B C D

(5.7)
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Thus we see that the reaction rate in this case 
will depend on the concentration of nitro-
gen, oxygen and a constant that depends on 
the nature of the reactants. This is a general 
result.

5.2.3.2 The reaction rate for an elementary reac-
tion: temperature dependence

We now need to estimate the fraction of nitro-
gen and oxygen atoms having at least the 
barrier energy, EB. For simplicity, we will 
assume that oxygen and nitrogen molecules 
have an identical energy distribution. The 
Boltzmann distribution law, which we encoun-
tered in Section 2.8.4.1 (eqn. 2.84), can be 
written to express the average number of mol-
ecules having energy level εi as:

 n Aei
Ti= −ε /k  (5.14)

where k is Boltzmann’s constant and A is a 
constant (comparing with equation 2.84, we 
see that A = n/Q where n is the total number 
of molecules in the system and Q is the parti-
tion function). In plain English, this equation 
tells us that the number of molecules in some 
energy level i decreases exponentially as the 
energy of that level increases (Figure 2.9). We 
want to know the number of molecules with 
energy greater than EB. In this case we are 
dealing with translational energy. The quantum 
spacings between translational energy levels 
are so small that they essentially form a con-
tinuum, allowing us to integrate eqn. 5.14. 

time t it will sweep out a cylindrical volume 
(Figure 5.2):

 V v r r t= +π( )N O2
2  (5.9)

Whether a collision occurs will depend on 
whether the center of an oxygen molecule 
falls within this volume (Figure 5.2). The 
number of collisions that will occur in this 
time will be:

 C n v r r t= +O N Oπ( )2
2  (5.10)

where nO is the number of oxygen molecules 
per unit volume. The number of collisions per 
unit time is then simply:

 C
t

n v r r= +O N Oπ( )2
2  (5.11)

If there are nN nitrogen atoms and the average 
velocity between nitrogen and oxygen mole-
cules is v , then the number of collisions per 
unit time is:

 "c n n v r r= +( )N O N Oπ 2

2  (5.12)

If we let k v r rN O= +( )π 2

2

then the rate at which collisions occur is:

 "c kn n= N O2  (5.13)

Figure 5.2 A nitrogen atom will sweep out a 
volume V v r r tN O= +π( )2

2  in time t. Whether a 
collision occurs will depend on whether the 
center (indicated by black dot) of an oxygen 
atom falls within this volume.

v × t

r = rN + rO2 No Collision

collision

No Collision

Figure 5.1 A nitrogen atom approaching an 
oxygen molecule must have enough kinetic 
energy to pass through the region where it is 
repelled by electrostatic repulsion of the 
electron cloud of the oxygen. Otherwise, it 
will not approach closely enough so that its 
electrons can combine with those of oxygen.

E>EB

E

NO
+

O

O

O2

O2
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EB
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N
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Thus the reaction rate in this case depends on 
the concentration of nitrogen and oxygen and 
a constant k, called the rate constant,† which 
depends upon temperature, properties of the 
reactants, and the barrier energy.

In a more rigorous analysis we would have 
to take into consideration atoms and mole-
cules not being spherically symmetric and 
that, as a result, some orientations of the mol-
ecules are more likely to result in reaction 
than others. In addition, a head-on collision 
is more likely to result in reaction than a 
glancing blow, so the collision cross-section 
will be less than π( )r rN O+ 2

2 . These factors 
can, however, be accounted for by multiplying 
by a constant, called a stearic factor, so the 
form of our equation, and the temperature 
dependence, would not be affected. Values of 
stearic factors for various reactions range 
over many orders of magnitude and can be 
quite small. In rare circumstances, they can  
be greater than 1 (implying an effective colli-
sion cross-section greater than the combined 
atomic radii).

Temperature occurs in two places in eqn. 
5.22; however, the square-root dependence is 
slight compared to the exponential one. For 
example, consider a temperature change of 
300 K to 325 K. For a reaction with an activa-
tion energy of 25 kJ, the exponential tempera-
ture dependence results an increase in reaction 
rate of more than a factor of 2, whereas the 
square root dependence increases the reaction 
rate by only 4%. Hence the temperature 
dependence can be essentially expressed as:

 k e E TB∝ − /k ‡

The temperature dependence of the rate con-
stant is most often written as:

 k Ae E TB= − /k  (5.22)

Fortunately for us, the integration of 5.14 
from ε = EB to infinity has a simple solution:

 A e d A Tei

B

BT

E

E T−
∞

−∫ =ε ε/k /kk  (5.15)

The fraction of molecules with energy greater 
than EB is just:

A e d
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 (5.16)

The rate of reaction will be the rate of colli-
sion times the fraction of molecules having 
energy greater than EB:

 ℜ = +( ) −n n v r r e E TB
N O N O

/kπ 2

2  (5.17)

Now we just need to find a value for velocity. 
The average velocity can be calculated from 
the Maxwell-Boltzmann Law,* which gives the 
distribution of velocities of molecules in a  
gas. Doing so, we find that the average veloc-
ity is:

 v
T= 8k

πµ
 (5.18)

where µ is the reduced mass, µ = +m m m mN O N O/2 2( )
µ = +m m m mN O N O/2 2( ). Substituting 5.18 into 5.17, our 

equation for the reaction rate is:

 ℜ = +( ) −n n r r
T

e E TB
N O N O

/kkπ
πµ2

2 8
 (5.19)

Redefining k as: 

 k r r
T

e E TB= +( ) −π
πµN O

/kk
2

2 8
 (5.20)

our reaction rate equation is:

 ℜ = kn nN O2  (5.21)

‡ This form of the temperature dependence of reaction rate was first proposed by Jacobus H. Van’t Hoff 
(1852–1911), who deduced it by analogy to eqn. 3.96, the Van’t Hoff equation. Van’t Hoff was born in Rotterdam 
and in 1878 was appointed professor of geology, mineralogy, and chemistry at the University of Amsterdam. In 
1896 he moved to the University of Berlin, where he remained for the rest of his life. He won the Nobel Prize for 
Chemistry in 1901.

† To distinguish the rate constant, k, from Boltzmann’s constant, k, we will always write the former in lower-case 
italics and the latter in roman typeface.

* So-called because Maxwell proposed it and Boltzmann proved it rigorously.
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which is the important Arrhenius relation.* It 
expresses the rate constant in terms of the 
barrier, or activation, energy (also often 
written as EA or E*), and A, a proportionality 
constant sometimes called the frequency 
factor (because it depends on the frequency of 
collisions), and temperature. (We can replace 
k, Boltzmann’s constant with R, the gas con-
stant, if we deal in moles rather than atoms.)

The temperature dependence of the rate 
constant is illustrated in Figure 5.3. We see that 
the reaction rate falls off by a factor of 102 as 
temperature is decreased from 500 to 200 K. 
This confirms our everyday experience that 
reaction rates are extremely temperature-
dependent. Table 5.1 lists some examples of 
activation energies for geochemical reactions.

The pre-exponential factor, A, is often 
assumed to be independent of temperature. 
Comparison of eqn. 5.22 with 5.21 shows, 
however, that it need not be. In the case of an 
elementary gas phase reaction, we would 

Table 5.1 Activation energies of some geochemical reactions.

EA

Reaction kJ/mol

Mg3Si4O10(OH)2 → 3MgSiO3 + SiO2 + H2O 371.8
CaCO3 + SiO2 → CaCO3 + CO2 225.0
2CaCO3 + Mg2+ → (CaMg)CO3 + Ca2+ 117.1
NaAlSi2O6

.H2O + SiO2 → NaAlSi3O8 + H2O 106.3
C2H4 + H2 → C2H6 102.8
CaF2 → Ca2+ + 2F+ 73.0
MgSiO3 + 2H+ + H2O → Mg2+ + H4SiO4 49.0
SiO2 (qz) + 2H2O → H2SiO4 40.6
SiO2(am) + 2H2O → H2SiO4 35.8
H2SiO4 → SiO2(qz) + 2 H2O 28.4
Mg2SiO4 + 4H+ → 2Mg2+ + H2SiO4 21.7
CaCO Ca CO3

2
3
2→ ++ + 20.1

O + O3 → 2O2 13.4

Figure 5.3 (a) Relative change in the reaction 
rate as a function of activation energy at 
300 K. (b) Change in the reaction rate for the 
same as a function of temperature with an 
activation energy of 15 kJ.
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* Named for Svante August Arrhenius (1859–1927) because Arrhenius provided the theoretical justification for 
Van’t Hoff’s proposal. Arrhenius’s PhD dissertation, completed in 1884 at the University of Uppsala in Sweden, 
was rated fourth class by the committee of examiners, implying great things were not expected of him. The old 
boys must have been a little surprised 19 years later when Arrhenius won the Nobel Prize for chemistry. Among 
Arrhenius’s other contributions were the ionic theory of electrolyte solutions and the greenhouse theory of climate: 
that the CO2 concentration in the atmosphere could be an important control on global temperature, and that 
anthropogenic burning of fossil fuel could lead to global warming.
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the values of the exponents for the reactants 
are the stoichiometric coefficients of the reac-
tant species. Thus if the reaction can be 
written in terms of a series of elementary reac-
tions, then the exponents for the rate equation 
can be deduced from those of the component 
elementary reactions. For elementary reac-
tions, the order of reaction will be equal  
to the sum of the stoichiometric coefficients of 
the reactants. For complex reactions, however, 
the order of reaction must be deduced, either 
experimentally, or from the component ele-
mentary reactions.

A further simplification may be made where 
one of the reactants is in sufficient abundance 
that its concentration is not affected by the 
progress of the reaction of interest. For 
instance, the hydration of CO2 through:

CO H O H CO2 2 2 3+ →

The rate of this reaction will be:

− =d
dt

k
[ ]

[ ][ ]
CO

CO H O2
2 2

which is a second-order reaction. However, in 
aqueous solution, H2O will always be present 
in great excess over CO2 and its abundance 
will not be significantly changed by this reac-
tion. This allows us to treat the reaction as if 
it were first order and to define a pseudo-first 
order rate constant, k*, as:

k k* [ ]= H O2

Since [H2O] is constant, it follows that k* is as 
well. The reaction rate can then be written as:

− =d
dt

k
[ ]

[ ]*CO
CO2

2

In Examples 5.1 and 5.2 we have used just 
such a pseudo-first order rate constant.

5.2.4 Rates of complex reactions

Deciding whether a reaction is elementary is not 
always straightforward. Consider the reaction:

predict a dependence on the square root of 
temperature. Other kinds of reactions show 
other kinds of temperature dependencies of 
the frequency factor, however. A more accu-
rate expression of temperature dependence of 
the reaction rate is:

 k AT en E TB= − /k  (5.23)

where the exponent n can be any number. 
Nevertheless, the temperature dependence of 
the frequency factor is usually small and it can 
often be safely neglected, as in our example 
above.

5.2.3.3 A general form of the rate equation

In general, the rate of a reaction such as:

 a b c dA B C D+ → +
can be expressed as:

 ℜ = ka a a aA
n

B
n

C
n

D
nA B C D  (5.24)*

where k is the rate constant and aA, etc. are 
activities (we will often use the simplifying 
assumption of ideality and replace these by 
concentrations). The exponents nA, nB, and so 
on, can be any number, including zero. The 
sum of the exponents nA, nB, . . . is the order 
of the reaction. In general, the value of the 
exponents must be determined experimen-
tally, though their values can be predicted if 
the reaction mechanism is known, as we saw 
in the above example.

Just as the mole fraction was the unit of 
choice for thermodynamics, moles per volume, 
or moles per area in the case of reactions 
taking place on surfaces, is the unit of choice 
for kinetics. Thus wherever more than one 
phase is involved, one concentration should 
be expressed in moles per unit area or volume.

There are several simplifications of eqn. 
5.24 for elementary reactions. First, the rate 
of reaction is independent of the concentra-
tion of the products, so the exponents of the 
products will be 0. Indeed, one of the criteria 
for an elementary reaction is that the product 
does not influence the reaction rate. Second, 

* Don’t confuse this equation, which expresses the way in which reaction rates depend on concentrations, with 
eqn. 5.7, which is the definition of the reaction rate.
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Example 5.1 Rate of hydration of CO2(aq)

The rate for the hydration of CO2 (i.e., CO2 + H2O → H2CO3) has been found to follow the first-
order rate law:

 − =
d

dt
kaq

aq
[ ]

[ ]( )
( )

CO
CO2

2  (5.25)

At 25°C, k has been determined to be 0.014 sec−1. Make a graph showing how the concentration 
of CO2 will change with time as the reaction proceeds, assuming an equilibrium (i.e., final) CO2 
concentration of 0.

Answer: Since we are note given the absolute concentrations, we cannot determine the absolute 
change. We can, however, determine relative change. To do so, we just integrate 5.25:

− =∫ ∫d
k dtaq

aq

t[ ]
[ ]

( )

( )

CO
CO

2

2 0

With some rearranging, we obtain:

 
[ ]
[ ]

( )

( )

CO
CO

2

2 0

aq

aq

kte= −  (5.26)

Figure 5.4 shows our result. It is apparent that this is a fast reaction. We can assume that equilibrium 
will prevail on most time-scales of interest to us.

Figure 5.4. Progress in the reaction CO2(aq) + H2O → H2CO3) with time, as measured by 
decrease in [CO2].
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 2 22 2NO NO O→ +  (5.27)

On a microscopic basis, we might describe 
this reaction as the collision of two NO2 mol-
ecules to form two NO molecules and an O2 
molecule. Since no intermediate steps occur, 
this would appear to be an elementary reac-
tion. The rate equation for this reaction has 
been experimentally determined to be:

− =d
dt

k
[ ]

[ ]
NO

NO2
2

22

This has the predicted form for an elementary 
reaction of second order; thus experiment 
confirms that reaction 5.27 is elementary.

Now consider the reaction O O: 2 33 2→
We might reason that this reaction requires 

only the collision of two ozone molecules 
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with no intermediate products and that the 
reaction is therefore primary. However, the 
experimentally determined rate law is:

 
1
3

1
2

2 3 3
2

2

d
dt

d
dt

k
[ ] [ ] [ ]

[ ]
O O O

O
= − =  (5.28)

Since the rate depends on the concentration 
of the product, the reaction is not elementary 
and must involve intermediate steps.

5.2.4.1 Chain reactions and branching

Many overall reactions involve a series of 
sequential elementary reactions, or steps, each 

Example 5.2 Oxidation of ferrous iron

Given the adjacent equilibrium and pseudo-first order rate constants for the oxidation of three species 
of ferrous iron (Fe2+, Fe(OH)+, and Fe(OH)2) to ferric iron in the adjacent table, calculate the overall 
rate of oxidation of ferrous iron at pH 2, 6, and 8, assuming a total Fe2+ concentration of 10−6 M.

Answer: The overrall oxidation rate can be written as:
 d

dt
k k k

ΣFe
Fe FeOH Fe OH

2

1
2

2 3 2

+
+ −= + +[ ] [ ] [ ( ) ]

 
(5.29)

Thus to calculate the rate, we will have to calculate concentrations of the various species. These are 
given by:

[ ]
[ ]
[ ]

[ ( ) ]
[ ]
[ ]

FeOH K
Fe
H

and Fe OH K
Fe
H

−
+

+

+

+= =1

2

2 2

2

2

Substitute these expressions we have:

 
d
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k
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K
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2
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+
+

+ += + +



[ ]

[ ] [ ]
 (5.30)

Since the total Fe2+ is the same at all three pHs, the concentration of the Fe2 ion must vary. So we 
need to calculate the concentration of ionic Fe2+ at these pHs. The total Fe2+ is:

ΣFe Fe FeOH Fe OH2 2
2

+ + −= + +[ ] [ ] [ ( ) ]

or: ΣFe Fe
K
H

K
H

2 2 1 2
2

1+ +
+ += + +



[ ]

[ ] [ ]

so that: [ ]

[ ] [ ]

Fe
Fe

K
H

K
H

2
2

1 2
21

+
+

+ +

=
+ +

Σ

We can now calculate the rates. Substituting appropriate values into eqn. 5.30, we find the rate is 0.0031 
M sec 0.9371 M sec and 7.89 M sec at Hs of 2, 4 and 8. Thus the combination of the different rate 
constants and the pH dependency of the Fe speciation results in a very strong pH dependence of the 
oxidation rate.

Equilibrium constants 

Reaction pK

Fe2+ + H2O ҙ Fe(OH)+ + H+ 4.5
Fe(OH)+ + H2O ҙ Fe(OH)+ + H+ 7.4

Oxidation rate constants 

Fe2+ Species k(s−1)
Fe2+ 7.9 × 10−6

FeOH+ 25
Fe(OH)2 7.9 × 106
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This is also the rate of the overall reaction. 
Thus the overall reaction will depend on the 
availability of OH. What makes the combus-
tion of hydrogen particularly interesting is 
that there are several ways in which OH may 
be created. Reaction 5.32b is one way. The 
monatomic oxygen created in this reaction, 
however, provides two alternative mecha-
nisms for the creation of the OH complex:
 H O OH H2 + → +  (5.32c)
and
 H O OH+ →  (5.32d)
Reactions 5.32b through 5.32d represent alter-
native reaction paths or branches. Notice that 
the final step also provides an alternative 
mechanism, or branch, for the production of 
monatomic hydrogen.

The branching that occurs provides the 
potential for a “runaway” or explosive reac-
tion. This is apparent if we simply sum reac-
tions 5.32 and 5.32b through 5.32d:

4 2 2× + → +[ ]OH H H O H

+ × + → +2 2[ ]H O OH O

+ + → +H O OH H2

+ + →H O OH

 5 2 4 22 2 2H O H O H+ → +  (5.32e)

Each cycle of these reactions produces four 
water molecules plus two hydrogens. Since the 
rate of the overall reaction, i.e., the production 
of water, depends on [OH], which in turn 
depends on [H], the reaction will accelerate 
with time. (Actually, the combustion of hydro-
gen is a very complex reaction. When all the 
elementary reactions are written down, includ-
ing the reverse reactions and reactions with the 
container wall, they fill an entire page. Interest-
ingly, it displays this runaway behavior only 
under certain combinations of T, P, and con-
tainer size and shape. The latter dependence 
results from reactions with, or catalyzed by, the 
container wall. Under certain conditions, it 
will become steady state; i.e., the creation and 
consumption of water balance to produce a 
constant concentration of water.)

5.2.4.2 Rate-determining step

It often happens that the reaction rate of a 
chain, or sequential, reaction, is controlled by 

of which must be completed before a subse-
quent reaction can occur. Such reactions are 
termed chain reactions. It is also possible that 
the path of an overall reaction may include two 
or more alternative elementary reactions, or 
sequences of elementary reactions, that occur 
simultaneously. These alternative paths are 
called branches. The combustion of hydrogen 
is a good example because it is a chain reac-
tion involving several branches.

Experiments have shown that the reaction rate 
for the combustion of hydrogen is not simply:

 d
dt

k
[ ]

] [ ] [ ]
H O

H O2
2

2
2=  (5.31)

and therefore 2H2 + O2 → 2H2O is not an 
elementary reaction. If it were an elementary 
reaction, eqn. 5.31 predicts that its rate should 
continuously decrease through the course of 
the reaction (provided temperature is held 
constant!) since the reactants will be con-
sumed and their concentrations will decrease. 
In actuality the rate of this reaction can 
increase rapidly, sometimes catastrophically 
(even at constant temperature), as it proceeds. 
Evidently, the reaction mechanism is more 
complex. Indeed, it appears to involve several 
steps. The final step of this reaction is:

 OH H H O H+ → +2 2  (5.32)

This is an elementary reaction, depending 
only on the concentration of the two reac-
tants. However, one of the reactants, OH, and 
one of the products, H, are not among the 
original constituents of the gas. Rather, they 
are created by intermediate steps. Species that 
do not appear in the overall reaction are 
termed reactive intermediates.

The first step in the combustion of hydro-
gen is breakup of the hydrogen molecule, 
forming highly reactive atomic H:

 H H2 2→  (5.32a)

The next step is reaction of the atomic hydro-
gen with an oxygen molecule:

 H O OH O+ → +2  (5.32b)

Reactions 5.32a and 5.32b are an example of 
a chain reaction.

Since 5.32 is an elementary reaction, the 
reaction rate can be written as:

d
dt

k
[ ]

[ ][ ]
H O

OH H2
2=
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denoting the steady state. In this case, we can 
express the reaction rate as:

 d A
dt

k A As
[ ]

([ ] [ ])≈ −  (5.34)

where [A]s is the steady state concentration of 
A. The reaction rate is 0 when [A] = [A]s.

To see how the concentration will vary 
before steady state is achieved, we integrate 
eqn. 5.34:

 ln
[ ] [ ]
[ ] [ ]

A A
A A

kts

s

−
− °





 = −

where [A]° is the initial concentration of A. 
This may be written as:

 
[ ] [ ]
[ ] [ ]

A A
A A

es

s

kt−
− °

= −  (5.35)

The denominator is a constant (for a given set 
of initial conditions), so we can rewrite eqn. 
5.35 as:

 [ ] [ ]A A Ces
kt− = −

The excess concentration of A, i.e., [A] − [A]s 
declines as e−t, so that steady state is approached 
asymptotically. An effective steady state will be 
achieved when t Ԡ 1/k. As in Example 5.1, 
the reaction rate decreases exponentially with 
time, i.e.:

 d A
dt

kCe kt[ ] = −

Now suppose that in addition to the reac-
tion: A → B, the reaction B → A also occurs 
and that both are first-order elementary reac-
tions. The rates of reaction will be:

 d A
dt

k A k B
[ ]

[ ] [ ]= − ++ −  (5.36)

Here we are using k+ for the rate constant of 
the forward reaction and k− for the rate con-
stant of the reverse reaction. Assuming the 
system is closed and that no other processes 
affect the concentrations of A and B, then:

 [ ] [ ]A B AB+ = Σ

where ΣAB is the total of A and B and is a 
constant. Equation 5.36 can therefore be 
written as:

a single step that is very much slower than the 
other steps. For example, how quickly you 
can buy a pencil at the campus bookstore on 
the first day of class will probably be control-
led entirely by how quickly you can get 
through the checkout line. Such a step is 
called the rate-determining step. Once the rate 
of this step is determined, the rates of all other 
steps are essentially irrelevant.

Now consider a reaction that can occur 
through two branches. For example,

 A B1 →  and A B2 →

The reaction rate is then:

 d A
dt

k k A
[ ]

( )[ ]= − +1 2  (5.33)

If one path is very much faster than the other, 
then the fastest of the two will always be 
taken. Thus for branched reactions, the fastest 
branch determines the reaction mechanism. 
Mathematically, we may say that if k1 Ԡ k2 
then (k1 + k2) ≈ k1 and therefore:

 d A
dt

k A
[ ]

[ ]≈ − 1

In our analogy above, if an express checkout 
is available, you would certainly take it. In this 
case, the slowness of the regular checkout  
line becomes irrelevant for determining how 
quickly you can buy your pencil. To sum up, 
we may say that when reactions occur in series, 
then the slowest reaction is the rate-determining 
step. When parallel, or branched, reaction 
paths of very different speeds are available, 
then only the fastest path is of interest.

5.2.5 Steady state and equilibrium

Many geochemical systems are steady-state 
ones, that is, time-invariant systems, or 
approximately so. The equilibrium state is 
also a steady state, but not all steady-state 
systems are necessarily equilibrium ones. We 
may say then that steady state is a necessary, 
but not sufficient, condition for equilibrium. 
Let’s consider how a system will approach the 
steady state and equilibrium.

 Consider the elementary reaction A B: →

Suppose that this reaction does not entirely 
consume A, but reaches a steady state where 
the concentration of A is [A]s, the subscript s 




