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PROBLEMS

 1. Consider the following minerals:

anhydrite: CaSO4

bassanite: CaSO4.½H2O (the stuff of which plaster of paris is made)
gypsum: CaSO4.2H2O

HCO3
− 113.5 ppm SO4

− 36.0 ppm
Cl− 1.1 ppm NO3

− 1.9 ppm
Ca2+ 40.7 ppm Mg2+ 7.2 ppm
Na+ 1.4 ppm K+ 1.2 ppm

(a) If water vapor is the only phase of pure water in the system, how many phases are 
there in this system and how many components are there?

(b) How many phases are present at invariant points in such a system? How many univari-
ant reactions are possible? Write all univariant reactions, labeling each according the 
phase that does not participate in the reaction.

 2. Consider a system consisting of olivine of variable composition ((Mg,Fe)2SiO4) and orthopy-
roxene of variable composition ((Mg,Fe)SiO3). What is the minimum number of components 
needed to describe this system?

 3. In section 3.2.1.3, we showed that a system containing H2O, H2CO3, HCO3
−, CO3

2−, H+, and 
OH− could be described in terms of components CO3

2−, H+, and OH−. Find a different set of 
components that describe the system equally well. Show that each of the species in the system 
is an algebraic sum of your chosen components.

 4. Use the data in Table 2.2 to construct a temperature-pressure phase diagram that showing 
the stability fields of calcite and aragonite.

 5. Consider the following hypothetical gaseous solution: gases 1 and 2 form an ideal binary 
solution; at 1000 K, the free energies of formation from the elements are −50 kJ/mol for 
species 1 and −60 kJ/mol for species 2.

(a) Calculate ΔGmixing for the solution at 0.1 increments of X2. Plot your results.
(b) Calculate G for an ideal solution at 0.1 increments of X2. Plot your results.
(c) Using the method of intercepts, find µ1 and µ2 in the solution at X2 = 0.2

 6. Using the thermodynamic data in Table 2.2, determine which side of this reaction is stable 
at 600°C and 400 MPa.:

2 33 2 3 2Al OH Al O H O( ) ! +

 7. The following analysis of water is from the Rhine River as it leaves the Swiss Alps:

(a) Calculate the ionic strength of this water. (Recall that concentrations in ppm are equal 
to concentrations in mmol kg−1 multiplied by formula weight.)

(b) Using the Debye–Hückel equation and the data in Table 3.2, calculate the practical 
activity coefficients for each of these species at 25°C.

Nordstrom, D.K. and Munoz, J.L. 1986. Geochemical Thermodynamics. Palo Alto, Blackwell Scientific.
Saxena, S.K., Chaterjee, N., Fei, Y. and Shen, G. 1993. Thermodynamic Data on Oxides and Silicates. Berlin, Springer 

Verlag.
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HCO3
− 451 ppm SO4

2− 38 ppm
Cl− 20 ppm NO3

− 9 ppm
Ca2+ 82 ppm Mg2+ 27 ppm
Na+ 28 ppm K+ 50 ppm
F− 1.3 ppm

Anions mg/l Cations mg/l

HCO3
− 332 Ca2+ 103.2

SO4
2− 14 Mg2+ 16.1

NO3
− 14 K+ 1.4

Cl− 8.2 Na+ 5.1

Na+ 0.481 M
Mg2+ 0.0544 M
Ca2+ 0.0105 M
K+ 0.0105 M
Cl− 0.560 M
SO4

− 0.0283 M
HCO3

− 0.00238 M

 8. Seawater has the following composition:

(a) Calculate the ionic strength.
(b) Using the Davies equation and the data in Table 3.2, calculate the practical activity 

coefficients for each of these species at 25°C.

 9. The following is an analysis of Acqua di Nepi, a spring water from the Italian province of 
Viterbo:

(a) Calculate the ionic strength of this water.
(b) Using the Debye–Hückel equation and the data in Table 3.1, calculate the practical 

activity coefficients for each of these species at 25°C.

10. Water from Thonon, France has the following composition:

(a) What is the ionic strength of this water?
(b) What are the activity coefficients for HCO3

− and CO3
2− in this water?

(c) Assuming an equilibrium constant for the dissociation of bicarbonate:

HCO H CO3 3
− + −+!

of 4.68 × 10−11 and a pH of 7.3, what is the equilibrium concentration of CO3
2− in this 

water?

11. The equilibrium constant for the dissolution of galena:

PbS H Pb H Ssolid aq
2 aq+ ++ +2 2!

is 9.12 × 10−7 at 80°C. Using γ Pb2 0 11+ = .  and γH2S = 1.77, calculate the equilibrium concen-
tration of Pb2+ in aqueous solution at this temperature and at pHs of 6, 5 and 4. Assume 
the dissolution of galena is the only source of Pb and H2S in the solution, and that there is 
no significant dissociation of H2S. Hint: mass balance requires that [H2S] = [Pb2+].



SOLUTIONS AND THERMODYNAMICS OF MULTICOMPONENT SYSTEMS 113

12. The dissociation constant for hydrofluoric acid (HF) is 10−3.2 at 25°C. What would be the 
pH of a 0.1 M solution of HF? You may assume ideal behavior. (Hint: Ask yourself what 
addition constraints are imposed on the system. Your final answer will require solving a 
quadratic equation.)

13. The first dissociation constant for H2S is K1 = 9.1 × 10−3. Neglecting the second dissociation 
and assuming ideality (i.e. activity equals concentration), what is the pH of 1 liter of pure 
water if you dissolve 0.01 moles of H2S in it? What fraction of H2S has dissociated? (HINT: 
assume that the concentration of OH− is negligible (in other words, no autodissociation of 
water) and use the quadratic equation for your final solution.)

14. Given the following analysis of biotite and assuming a mixing-on-site model for all sites, 
calculate the activities of the following components:

KMg Si AlO F fluorophlogopite3 3 10 2( ) ( )

KFe Si AlO OH annite3
2

3 10 2
+ ( ) ( )

Site Ion Ions per site

Tetrahedral Si 2.773
Al 1.227

Octahedral Al 0.414
Ti 0.136
Fe+3 0.085
Fe+2 1.399
Mg 0.850

Interlayer Ca 0.013
Na 0.063
K 0.894

Anion OH 1.687
F 0.037

Hint: Check your result by making sure the activity of 
phlogopite in pure phlogopite is 1.

Site Ion Ions per site

Tetrahedral Si 1.96
Al 0.04

Octahedral M1 Al 0.12
Mg 0.88

Octahedral M2 Fe 0.06
Ca 0.82
Na 0.12

15. Given the following analysis of a pyroxene, use the mixing-on-site model of ideal activities 
to calculate the activity of jadeite (NaAlSi2O6) and diopside (CaMgSi2O6) in this mineral:

16. Write the equilibrium constant expression for the reaction:

CaCO H SO H O

CaSO H O CO
3 4

2
2

4 2 2

2

2
( ) ( ) ( )

( )

s aq liq

g

+ + +
⋅ +

+ −

!

assuming the solids are pure crystalline phases and that the gas is ideal.
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17. Assuming ideal solution behavior for the following:

(a) Show that the boiling point of a substance is increased when another substance is dis-
solved in it, assuming the concentration of the solute in the vapor is small.

(b) By how much will the boiling point of water be elevated when 10% salt is dissolved 
in it?

18. Find ∆G for the reaction:

Pb Mn Pb Mn2 2+ ++ +!

Which side of the reaction is favored? (HINT: use the data in Table 3.3.)

19. What is the ∆G for the reaction:

Cu e Cu2+ − ++ !

What is the pε° for this reaction?

20. Consider a stream with a pH of 6.7 and a total dissolved Fe concentration of 1 mg/l. Assume 
ideal behavior for this problem.

(a) If the stream water is in equilibrium with the atmospheric O2 (partial pressure of 
0.2 MPa), what is the pε of the water?

(b) Assuming they are the only species of Fe in the water, what are the concentrations of 
Fe3+ and Fe2+? Use the pε you determined in part a.

21. Write reactions for the oxidation of nitrogen gas to aqueous nitrite and nitrate ions that 
contain the electron and hydrogen ion (i.e., reactions suitable for a pε–pH diagram). Write 
the log equilibrium constant expression for these reactions. Using the data below, calculate 
the log equilibrium constant for these reactions under standard state conditions). Calculate 
pε° and EH

o  for these reactions. Hint: remember, in the standard state, all reactants and 
products have activities of 1.

Species DGf
o kJ/mol

H2O −237.19
N2 (gas) 0
NO3

− −111.3
NO2

− −32.2

Standard state is 25°C and 0.1 MPa. R = 8.314 J/mol-K.

Species DGf° Species DGf°

S2− (aq) +85.81 H2O −237.19
HS− (aq) +12.09 H+ 0
H2S (aq) −27.82 H2 (g) 0
SO aq4

2− ( ) −744.54 O2 (g) 0
HSO4

− (aq) −755.92

Values are in kJ/mol, standard state is 25°C and 0.1 MPa. R = 8.314 J/mol-K.

22. Construct a pε–pH diagram for the following species of sulfur: HSO4
− , SO4, H2S, HS−, and 

S2− at 25°C and 0.1 MPa. The following free energies of formation should provide sufficient 
information to complete this task.
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Species DGf
o

U OH( )5
− (aq) −1630.80

UO2
2+ (aq) −952.53

UO2 (s) −1031.86
U3O8 (s) −3369.58
H2O −237.19

Values are in kJ/mol, standard state is 25°C and 0.1 MPa. 
R = 8.314 J/mol-K.

23. Construct a pε–pH diagram for dissolved species of uranium, UO2
2+ and U OH( )5

−, and the 
two solid phases UO2 and U3O8 at 25°C and 0.1 MPa. Assume the activity of dissolved 
uranium is fixed at 10−6. The following free energies of formation should provide sufficient 
information to complete this task.



Chapter 4

Applications of thermodynamics 
to the Earth

4.1 INTRODUCTION

In the previous two chapters, we developed 
the fundamental thermodynamic relation-
ships and saw how they are applied to geo-
chemical problems. The tools now in our 
thermodynamic toolbox are sufficient to deal 
with many geochemical phenomena. They are 
not sufficient, however, to deal with all geo-
chemical phenomena. In this chapter, will add 
a final few thermodynamic tools. These allow 
us to deal with non-ideal behavior and exso-
lution phenomena in solids and silicate liquids. 
With that, we can use thermodynamics to 
determine the pressure and temperature at 
which rock assemblages formed, certainly one 
of the most useful applications of thermody-
namics to geology. Along the way, we will see 
how thermodynamics is related to one of the 
most useful tools in petrology: phase dia-
grams. We will then briefly consider how ther-
modynamics has been used to construct 
computer models of how magma composi-
tions evolve during melting and crystalliza-
tion. Finally, we return to the question of 
non-ideal behavior in electrolyte solutions 
and examine in more depth the problems of 
ion association and solvation and how this 
affects ion activities. Deviations from ideal 
behavior tend to be greater in solutions of 
high ionic strength, which includes such geo-
logically important solutions as hydrothermal 
and ore-forming fluids, saline lake waters, 

metamorphic fluids, and formation and oil 
field brines. We briefly examine methods  
of computing activity coefficients at ionic 
strengths relevant to such fluids.

4.2 ACTIVITIES IN NON-IDEAL SOLID 
SOLUTIONS

4.2.1 Mathematical models of real solutions: 
Margules equations

Ideal solution models often fail to describe the 
behavior of real solutions; a good example is 
water and alcohol, as we saw in Chapter 3. 
Ideal solutions fail spectacularly when exsolu-
tion occurs, such as between oil and vinegar, 
or between orthoclase and albite, a phenom-
enon we will discuss in more detail shortly. In 
non-ideal solutions, even when exsolution 
does not occur, more complex models are 
necessary.

Power, or Maclaurin, series are often a con-
venient means of expressing complex mathe-
matical functions, particularly if the true form 
of the function is not known, as is often the 
case. This approach is the basis of Margules* 
equations, a common method of calculating 
excess state functions. For example, we could 
express the excess volume as a power series:

V A BX CX DXex = + + + +2 2
2

2
3 …  (4.1)

where X2 is the mole fraction of compo-
nent 2.

Geochemistry, First Edition. William M. White.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

* Named for Max Margules (1856–1920), an Austrian meteorologist, who first used this approach in 1895.
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which reduces to B = −C. Letting WV = B in 
eqn. 4.2, we have:

V W X W X W X X
X X W

ex V V V

V

= − = −
=

2 2
2

2 2

1 2

1( )  (4.6)

W is known as an interaction parameter 
because non-ideal behavior arises from inter-
actions between molecules or atoms and 
depends on temperature, pressure, and the 
nature of the solution, but not on X. Expres-
sions similar to 4.2–4.6 may be written for 
enthalpy, entropy, and free energy; for 
example:

 G X X Wex G= 1 2  (4.7)

The WG term may be expressed as:

 W W PW TWG U V S= + −  (4.8)

Since the WH term can be written as:

 W W PWH U V= +

then eqn. 4.8 may also be written:

 W W TWG H S= −  (4.8a)

The temperature and pressure dependence of 
WG are then

∂
∂





 = −W

T
WG

P
s  (4.9)

 
∂
∂





 =W

P
WG

T
V  (4.10)

Regular solutions* are a special case of 
symmetric solutions where:

Ws = 0  and therefore W WG H=

Regular solutions correspond to the case 
where ΔSex = 0, i.e., where ΔSmixing = ΔSideal, 
and therefore where WS = 0. From eqn. 4.9, 
we see that WG is independent of temperature 
for regular solutions. Examples of such solu-
tions include electrolytes with a single, uncou-
pled, anionic or cationic substitution, such as 
CaCl2–CaBr2, or solid solutions where there 

Following the work of Thompson (1967), 
Margules equations are used extensively in 
geochemistry and mineralogy as models for 
the behavior of non-ideal solid solutions. It 
should be emphasized that this approach is 
completely empirical – true thermodynamic 
functions are not generally power series. The 
approach is successful, however, because 
nearly any function can be approximated as 
a power series. Thus Margules equations are 
attempts to approximate thermodynamic 
properties from empirical observations when 
the true mathematical representation is not 
known. We will consider two variants of 
them: the symmetric and asymmetric solution 
models.

4.2.1.1 The symmetric solution model

In some solutions, a sufficient approximation 
of thermodynamic functions can often be 
obtained by using only a second-order power 
series (i.e., in eqn. 4.1, D = E = . . . = 0). 
Now in a binary solution, the excess of any 
thermodynamic function should be entirely a 
function of mole fraction X2 (or X1, however 
we wish to express it). Put another way, where 
X2 = 0, we expect Vex = 0. From this we can 
see that the first term in eqn. 4.1, A, must also 
be 0. Thus eqn. 4.1 simplifies to:

 V BX CXex = +2 2
2  (4.2)

The simplest solution of this type would be 
one that is symmetric about the midpoint, 
X2 = 0.5; this is called a symmetric solution. 
In essence, symmetry requires that:

 BX CX BX CX2 2
2

1 1
2+ = +  (4.3)

Substituting (1 − X2) for X1 and expanding 
the right-hand side of eqn. 4.3, we have:

 BX CX B BX C CX CX2 2
2

2 2 2
22+ = − + − +  

(4.4)

Collecting terms and rearranging:

 B X C X( ) ( )2 1 1 22 2− = −  (4.5)

* The term regular solution is often used to refer to symmetric solutions. In that case, what we termed a regular 
solution is called a strictly regular solution.
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(You can satisfy yourself that this may be 
written as a power series to the third order of 
either X1 or X2.) The two coefficients are 
related to the Henry’s Law constants:

 W RT hG i i ii = − =µ µ* lno  (4.17)

Activity coefficients are given by:

ν λRT W W X W W Xi G G j G G jj i i jln ( ) ( )= − + −2 22 3

 (4.18)

where j = 2 when i = 1 and vice versa, and ν 
is the stoichiometric coefficient. As for the 
symmetric solution model, the interaction 
parameters of the asymmetric model can be 
expressed as the sum of the WU, WV, and WS 
interaction parameters to account for tem-
perature and pressure dependencies (see 
Example 4.1).

The alkali feldspars (NaAlSi3O8–KAlSi3O8) 
are an example of a solid solution exhibiting 
asymmetric exsolution. Figure 4.1 shows the 
ΔGreal, ΔGideal, and ΔGexcess for the alkali feld-
spar solid solution computed for 600°C and 
200 MPa using the asymmetric solution model 
of Thompson and Waldbaum (1969). ΔGexcess 
is computed from eqn. 4.16, ΔGideal is com-
puted from eqn. 3.30. Figure 4.2 shows ΔGreal 
for a series of temperatures. Perhaps a clearer 
picture of how ΔG will vary as a function of 
both composition and temperature can be 
obtained by plotting all three variables simul-
taneously, as in Figure 4.3.

is a single substitution in just one site (e.g., 
Mg2SiO4–Fe2SiO4).

Setting eqn. 4.7 equal to eqn. 3.57, we have 
for binary solutions:

 G X X W RT X Xex G= = +1 2 1 1 2 2[ ln ln ]λ λ  
(4.11)

For a symmetric solution we have the addi-
tional constraint that at X2 = X1, λ1= λ2. From 
this relationship it follows that:

 RT X Wi j Glnλ = 2  (4.12)

This leads to the relationships:

µ µ1 1 1 2
2= + +o RT X X WGln  (4.13)

 µ µ2 2 2 1
2= + +o RT X X WGln  (4.13a)

The symmetric solution model should reduce 
to Raoult’s and Henry’s laws in the pure sub-
stance and infinitely dilute solution respec-
tively. We see that as X1 → 1, eqns. 4.13 and 
4.13a reduce respectively to:

µ µ1 1 1= +o RT Xln  (4.14)

 µ µ2 2 2= + +o RT X WGln  (4.15)

Equation 4.14 is Raoult’s Law; letting:

µ µ* = ° + WG  or W RT hG = ln

then eqn. 4.15 is Henry’s Law. Thus the inter-
action parameter can be related to the param-
eters of Henry’s Law, and activity coefficient. 
In the Margules representation, a solution 
that is ideal throughout is simply the special 
case where A= B = C = D = . . . = 0.

4.2.1.2 The asymmetric solution model

Many real solutions, for example mineral 
solutions with asymmetric solvi, are not sym-
metric. This corresponds to the case where D 
in eqn. 4.1 is non-zero, so we must carry the 
expansion to the third order. It can be shown 
that in this case the excess free energy in 
binary solutions is given by:

 G W X W X X Xex G G= +( )1 22 1 1 2  (4.16)
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Figure 4.1 Alkali feldspar solid solution 
computed at 600°C and 200 MPa (2 kb) using 
the data from Thompson and Waldbaum 
(1969). ΔGreal = ΔGideal + ΔGexcess.
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Figure 4.2 ΔGreal of alkali feldspar solution 
computed for a series of temperatures and 
200 MPa. From Thompson and Waldbaum 
(1969).

Figure 4.3 ΔG surface for the alkali feldspar 
solid solution as a function of the mole 
fraction of albite and temperature. Thompson 
and Waldbaum (1969).

Example 4.1 Computing activities using Margules parameters

Compute the activity of albite in an albite (Ab) and orthoclase (Or) solid solution (alkali feldspar) 
as a function of the mole fraction of albite from XAb = 0 to 1 at 600°C and 200 MPa. Use the asym-
metric solution model and the data of Thompson and Waldbaum (1969) given below.

Alkali feldspar Margules parameters

Answer: Our first step is to calculate WG for each end member where WG = WH + WvP − WST. 
Doing so, we find WGAb = 10.344 kJ and WGOr = 18.938 kJ. We can then calculate the activity coef-
ficient as a function of XAb and XOr from eqn. 4.19. The activity is then computed from a = λXAb. 
The results are plotted in Figure 4.4.

Ab Or

WV (J/MPa-mol) 3.89 4.688
WS (J/mol) 19.38 16.157
WH (kJ/mol) 26.485 32.105

XAB

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

γ
Na

a Na

Figure 4.4 Activity and activity cofficient of albite in alkali feldspar solid solution computed at 
600°C and 200 MPa using the asymmetric solution model from Thompson and Waldbaum (1969).
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path, while at lower temperatures, such as 
600°C (Figure 4.1), inflections occur and 
there is a region where ΔGreal is concave 
downward. All this suggests we can use  
calculus to predict exsolution. For a binary 

4.3 EXSOLUTION PHENOMENA

Now consider a binary system, such as NaAl-
Si3O8–KAlSi3O8 in the earlier example, of 
components 1 and 2, each of which can form 
a pure phase, but also together form a solu-
tion phase, which we will call c. The condi-
tion for spontaneous exsolution of components 
1 and 2 to form two phases a and b is simply 
that Ga + Gb < Gc.

As we saw in Chapter 3, the free energy of 
a real solution can be expressed as the sum of 
an ideal solution and a non-ideal or excess 
free energy term:

 G G Greal ideal ex= +

The free energy of the ideal part is given by:

G X RT X Xideal i i
o

i

i

i

= +∑ ∑µ ln 1  (3.31)

Further, the ideal part itself consists of two 
terms, the first term in eqn. 3.31 correspond-
ing to the free energy of a mechanical mixture 
(Gmixture), and the second part being the free 
energy of ideal mixing (ΔGideal mixing). Figure 
4.5a illustrates the variation of Gexcess, Gmix-

ture, and Gideal in this hypothetical system. 
Gmixture is simply the free energy of a mechan-
ical mixture of pure components 1 and 2 
(e.g., orthoclase and albite). Figure 4.5b illus-
trates the variation of Greal in this system. So 
long as Greal is less than Gmixture, a solution is 
stable relative to pure phases 1 and 2. You 
can see that Gideal is always less than Gmixture, 
so as long as the Gex term is not too great. 
In the hypothetical case illustrated in Figure 
4.5, a solution is always stable relative to a 
mechanical mixture of the pure end member 
phases. However, if we look carefully at 
Figure 4.5b, we see there is yet another pos-
sibility, namely that two phases a and b, each 
of which is a limited solid solution of com-
ponents 1 and 2, are stable relative to a 
single solid solution. Thus at equilibrium, 
two phases will exsolve from the single solu-
tion; this is just what occurs at lower tem-
peratures in the alkali feldspar system. It 
would be useful if thermodynamics could 
predict when such exsolution will occur. Let’s 
see if our thermodynamics tools are up to the 
task.

Looking at Figure 4.2, we see that at 800°C, 
ΔGreal defines a continuously concave upward 
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Figure 4.5 (a) Schematic isothermal, isobaric 
G–X plot for a real solution showing ΔG of 
mechanical mixing, ideal mixing and excess 
mixing. (b) Sum of ideal and excess mixing 
free energies shown in (a). Tangents to the 
minima give the chemical potentials in 
immiscible phases a and b. (c) T–X plot for 
same system as in (b). Solid line is the solvus, 
red dashed line is the spinodal. Exsolution 
may not occur between the spinodal and 
solvus because the free energy can locally 
increase during exsolution. After Nordstrom 
and Munoz (1986). With permission from 
John Wiley & Sons.
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The mechanical mixture of a and b has less 
free energy than a single solution phase eve-
rywhere between xa

2 and xb
2. It is therefore 

thermodynamically more stable, so exsolu-
tion can occur in this region.

In Figure 4.2, we can see inflection points 
developing at about 650°C in the alkali feld-
spar solution. The inflection points become 
more marked and occur at increasingly differ-
ent values of XAb as temperature decreases. 
The alkali feldspar system illustrates a 
common situation where there is complete 
solid solution at higher temperature, but 
decreasing miscibility at lower temperature. 
This occurs because the free energy of ideal 
mixing becomes less negative with decreasing 
temperature (Figure 3.6).

Figure 4.5c shows a schematic drawing of 
a temperature–composition plot in which 
there is complete solution at higher tempera-
ture with a widening two-phase region at 
lower temperatures. The boundary between 
the two-phase and one-phase regions is shown 
as a solid line and is known as the solvus.

The analysis of exsolution is relevant to 
immiscible liquids (e.g., oil and vinegar, sili-
cate and sulfide melts) as well as solids. There 
is a difference, however. In solids, exsolution 
must occur through diffusion of atoms 
through crystal lattices, while in liquids both 
diffusion and advection serve to redistribute 
components in the exsolving phases. As exso-
lution begins, the exsolving phases begin with 
the composition of the single solution and 
must rid themselves of unwanted components. 
In a solid, this only occurs through diffusion, 
which is very slow. This leads to a kinetic 
barrier that often prevents exsolution even 
though two exsolved phases are more stable 
than a solution. This is illustrated in Figure 
4.6. For example, consider a solution of com-
position C. It begins to exsolve protophases 
of A and B, which initially have compositions 
A′ and B′. Even though a mechanical mixture 
of A and B will have lower free energy than 
solution phase C, A′ and B′, the initial prod-
ucts of exsolution, have higher free energy 
than C. Furthermore, as exsolution proceeds 
and these phases move toward compositions 
A and B, this free energy excess becomes 
larger. Thus exsolution causes a local increase 
in free energy and therefore cannot occur. 
This problem is not encountered at composi-
tion C′, though, because a mixture of the 

solution of components 1 and 2, the Gmixture 
and ΔGideal mixing terms are:

 G X Xmixture
o o= +1 1 2 2µ µ

 ∆G RT X X X Xideal mixing = +( ln ln )1 1 2 2

Equation 3.31 can thus be written as:

G X X
RT X X X X G

o o

ex

= +
+ + +

1 1 2 2

1 1 2 2

µ µ
( ln ln )

 (4.19)

Differentiating with respect to X2 (and recall-
ing that X1 = 1 − X2), we obtain:
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∂
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1 2
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This is the equation for the slope of the curve 
of G vs. X2. The second derivative is:
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This tells us how the slope of the curve changes 
with composition. For an ideal solution, Gexcess 
is 0, the second derivative is always positive, 
and the free energy curve is concave upward. 
But for real solutions Gexcess can be positive or 
negative. If for some combination of T and X 
(and P), the second derivative of Gexcess 
becomes negative and its absolute value is 
greater than the RT/X1X2 term, inflection 
points appear in the G–X curve. Thus exsolu-
tion is thermodynamically favored if for some 
composition:

 
RT

X X
G
X

ex

1 2

2
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≤

The inflection points occur where the second 
derivative is 0; however, as may be seen in 
Figure 4.5b, the inflection points do not cor-
respond with the thermodynamic limits of 
solubility, which in this diagram are between 
xa

2 and xb
2.

We can draw a straight line that is tangent 
to the free energy curve at xa

2 and xb
2. This line 

is the free energy of a mechanical mixture of 
the two limited solutions a and b. Phase a is 
mostly component 1, but contains xa

2 of com-
ponent 2. Similarly, phase b is mostly compo-
nent 2 but contains 1 2− xb of component 1. 
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system diopside–anorthite (CaMgSi2O6 or 
clinopyroxene and Ca-plagioclase, CaAl2Si2O8; 
two of the more common igneous rock-
forming minerals). In multicomponent systems 
we must always be concerned with at least 
three thermodynamic variables: P, T, and X. 
Thus any T–X phase diagram will be valid for 
only one pressure, 0.1 MPa (1 bar ≈ 1 atm) in 
this case. Of course, with a three-dimensional 
drawing it is possible to represent both tem-
perature and pressure as well as composition 
in a binary system.

It should not surprise you at this point to 
hear that the phase relationships in a chemical 
system are a function of the thermodynamic 
properties of that system. Thus phase dia-
grams, such as Figures 4.7 and 4.8, can be 
constructed from thermodynamic data. Con-
versely, thermodynamic information can be 
deduced from phase diagrams.

Let’s now see how we can construct phase 
diagrams, specifically T–X diagrams, from 
thermodynamic data. Our most important 
tool in doing so will be the G X−  diagrams 
that we have already encountered. The guiding 
rule in constructing phase diagrams from 
G X−  diagrams is that the stable phases are 
those that combine to give the lowest G. Since 
a G X−  diagram is valid for only one particu-
lar temperature, we will need a number of 
G X−  diagrams at different temperatures to 

exsolving protophases A′′ and B′′ has lower 
free energy than original solution at C′. Thus 
the actual limit for exsolution is not tangent 
points such as B but at inflection points (where 
∂2G/∂X2 = 0) such as S. The locus of such 
points is plotted in Figure 4.5c as the red line 
and is known as the spinodal.

4.4 THERMODYNAMICS AND PHASE 
DIAGRAMS

A phase diagram is a representation of the 
regions of stability of one or more phases as 
a function of two or more thermodynamic 
variables such as temperature, pressure, or 
composition. In other words, if we plot two 
thermodynamic variables such as temperature 
and pressure or temperature and composi-
tion, we can define an area on this plot where 
a phase of interest is thermodynamically 
stable. Figure 4.7 is an example of a T–P 
phase diagram for a one-component system: 
SiO2. The diagram shows the SiO2 phase 
stable for a given combination of pressure and 
temperature. Figure 4.8 is an example of a 
simple T–X diagram for the two-component 
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Figure 4.7 P–T phase diagram for SiO2. This 
system has one component but 7 phases. L 
designates the liquid phase. The α–β quartz 
transition is thought to be partially second-
order, that is, it involves only stretching and 
rotation of bonds rather than a complete 
reformation of bonds as occurs in first-order 
phase transitions.
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Figure 4.6 A small portion of a G–X plot 
illustrating the origin of the spinodal. The 
process of exsolution of two phases from a 
single solid solution must overcome an energy 
barrier. As exsolution from a solution of 
composition C begins, the two exsolving 
phases have compositions that move away 
from C, e.g., A′ and B′. But the free energy of 
a mechanical mixture of A′ and B′ has greater 
free energy, by ΔGunmix, than the original 
single solution phase. Exsolution will 
therefore be inhibited in this region. This 
problem does not occur if the original 
solution has composition C′.
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ΔSm is the entropy change of melting. Thus 
the melting temperature of a pure substance 
is simply:

 T
H
S

m
m

m

= ∆
∆

 (4.23)

This is a very simple, but very important, 
relationship. This equation tells us that tem-
perature of melting of a substance is the ratio 
of the enthalpy change to entropy change of 
melting. Also, if we can measure temperature 
and enthalpy change of the melting reaction, 
we can calculate the entropy change.

The pressure dependence of the melting 
point is given by the Clapeyron equation:

 
dT
dP

V
S

m

m

= ∆
∆

 (4.24)

Precisely similar relationships hold for vapori-
zation (boiling). Indeed, the temperature and 
pressure boundaries between any two phases, 
such as quartz and tridymite, calcite and arag-
onite, and so on, depend on thermodynamic 
properties in an exactly analogous manner.

In eqn. 3.66 we found that addition of  
a second component to a pure substance 
depresses the melting point. Assuming ΔSm 
and ΔHm are independent of temperature, we 
can express this effect as:
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T
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i m i m
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∆
 (4.25)

Since enthalpies of fusion, rather than entro-
pies, are the quantities measured, eqn. 4.25 
may be more conveniently expressed as:
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 (4.26)

Example 4.2 shows how the approximate 
phase diagram for the diopside–anorthite 
system (Figure 4.9) may be constructed using 
this equation.

It must be emphasized that in deriving eqn. 
3.66, and hence the eqns. 4.25 and 4.26, we 
made the assumption that the solid was a pure 
phase. This assumption is a reasonably good 

construct a single T–X diagram (we could 
also construct P–X diagrams from a number 
of G X−  diagrams at different pressures). 
Before we begin, we will briefly consider the 
thermodynamics of melting in simple systems.

4.4.1 The thermodynamics of melting

One of the more common uses of phase dia-
grams is the illustration of melting relation-
ships in igneous petrology. Let’s consider how 
our thermodynamic tools can be applied to 
understanding melting relationships. We begin 
with melting in a simple one-component 
system, for example quartz. At the melting 
point, this system will consist of two phases: 
a solid and a melt. At the melting point, the 
liquid and solid are in chemical equilibrium. 
Therefore, according to eqn. 3.17: µl = µs.

The Gibbs free energy of melting, ΔGm, 
must be 0 at the melting point (and only at 
the melting point). Since:

 ∆ ∆ ∆G H T Sm m m m= −  (4.22)

and ΔGm = 0 at Tm, then:

 ∆ ∆H T Sm m m=

where ΔHm is the heat (enthalpy) of melting 
or fusion,* Tm is the melting temperature, and 

1553 P = 0.1 MPa

An + L
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Di + L

An + Di

An
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1400

1274
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XDi

T,
 °

C

1391
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Figure 4.8 Phase diagram (T–X) for the 
two-component system diopside–anorthite at 
1 atm. Four combinations of phases are 
possible as equilibrium assemblages: liquid 
(L), liquid plus diopside (L + Di), liquid plus 
anorthite (L + An), and diopside plus 
anorthite.

* The heat of fusion is often designated by ΔHf. I have chosen to use the subscript m to avoid confusion with heat 
of formation, for which we have already been using the subscript f.



124 GEOCHEMISTRY

one for ice, and for the anorthite–diopside 
binary system, but it is not generally valid. 
Should the solid or solids involved exhibit 
significant solid solution, this assumption 
breaks down and these equations are invalid. 
In that case, melting phase diagrams can  
still be constructed from thermodynamic 
equations, but we need to model the solid 
solution as well as the liquid one. Section 
4.4.2.1 illustrates an example (anorthite–
albite) where the two solutions can be modeled 
as ideal.

4.4.2 Thermodynamics of phase diagrams for 
binary systems

In a one-component system, a phase bound-
ary, such as the melting point, is univariant 
since at that point two phases coexist and 
f = c − ϕ + 2 = 1 − 2 + 2 = 1. Thus specifying 

Example 4.2 Calculating melting curves

Using the data given below and assuming (1) that the melt is an ideal solution and (2) diopside and 
anorthite solids are pure phases, calculate a T–X phase diagram for melting of an anorthite–diopside 
mixture.

Answer: Solving eqn. 4.26 for T, and replacing activity with mole fraction (since we may assume 
ideality), we have:

 T
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 (4.27)

We then calculate T for every value of XAn and XDi. This produces two curves on a T–X plot, as 
shown in Figure 4.9. The curves intersect at the eutectic, or lowest point at which melt may exist in 
the system.

Comparing our result with the actual phase relationships determined experimentally (Figure 4.8), 
we see that while the computed phase diagram is similar to the actual one, our computed eutectic 
occurs at XDi = 0.70 and 1335°C and the actual eutectic occurs at XDi ≈ 0.56 and 1274°C. The dif-
ference reflects the failure of the several assumptions we made. First, and most importantly, silicate 
liquids are not ideal solutions. Second, the entropies and enthalpies of fusion tend to decrease some-
what with decreasing temperature, violating the assumption we made in deriving eqn. 4.26. Third, 
the diopside crystallizing from anorthite–diopside mixtures is not pure, but contains some Al and 
an excess of Mg.

Tm ΔHm

°C J/mol

Diopside 1391 138100
Anorthite 1553 136400

Data from Stebbins et al. (1983).
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Figure 4.9 Computed phase diagram for the 
system anorthite–diopside (CaAl2Si2O8–
CaMgSi2O6). The eutectic occurs at XDi = 0.7 
and 1334°C. The dashed lines beyond the 
eutectic give the apparent melting points of 
the components in the mixture.
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where on the curve. Of course, since this 
diagram applies only to one temperature,  
we cannot say from this diagram alone that 
there will be complete solution at all 
temperatures.

Figure 4.11 illustrates four possible divari-
ant systems. The first case (Figure 4.11a) is 
that of a liquid solution of composition L′ in 
equilibrium with a solid of fixed composition 
S2 (pure component 2). Because the system is 
divariant, there can be only one possible 
liquid composition since we have implicitly 
specified P and T. As usual, the equilibrium 

Phases

Free 
compositional 
variables

Univariant 2 solids + liquid, 2 
liquids + solid, 3 
solids or liquids

0

Divariant 1 solid + 1 liquid, 2 
solids, 2 liquids

0

Trivariant 1 solid or 1 liquid 1

X1

G

X2

X20 1

either temperature or pressure fixes the other. 
A three-phase point, such as the triple point of 
water, is invariant. Hence simply from knowing 
that three phases of water coexist (i.e., knowing 
we are at the triple point), we know the tem-
perature and pressure.

In binary systems, the following phase 
assemblages are possible according to the 
Gibbs phase rule (ignoring for the moment 
gas phases):

When a G X−  diagram is drawn, it is drawn 
for a specific temperature and pressure, such 
that G X−  are isobaric and isothermal. Thus 
we have already fixed two variables, and the 
compositions of all phases in univariant and 
divariant assemblages are fixed by virtue of 
our having fixed T and P. Only in trivariant 
systems are we free to choose the composition 
of a phase on a G X−  diagram. Figure 4.10 
is a schematic diagram of a two-component, 
one-phase (trivariant) assemblage, in which 
there is complete solution between compo-
nent 1 and component 2. This phase might be 
either a liquid, or a solid such as plagioclase. 
The composition of the phase may fall any-

Figure 4.10 Molar free energy vs. 
composition ( )G X− 2  for a one-phase 
assemblage that exhibits complete solution of 
either a liquid or solid.
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Figure 4.11 Plot of molar free energy vs. 
composition ( )G X− 2  for two-phase divariant 
systems. (a) A liquid solution (L) is in 
equilibrium with a solid (S2) of pure X2. The 
shaded area shows the range of composition of 
systems for which L′ and S2 coexist as separate 
phases. (b) Here both solid and liquid have 
variable composition. Equilibrium compositions 
are determined by finding a tangent to both free 
energy curves. L′ and S′ will be the equilibrium 
phases for systems having compositions in the 
shaded area. (c) is the case of two immiscible 
solids, while (d) shows two limited solid 
solutions of composition S1 and S2. Here, the 
compositions of the solids are given by the point 
where a straight line is tangent to the curve in 
two places. After Nordstrom and Munoz (1986). 
With permission from John Wiley & Sons.
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well to the case of two liquids of limited 
solubility.

Figure 4.12a shows the case of two solid 
solutions plus one liquid. The chemical poten-
tial of each component in each phase must be 
equal to the chemical potential of that com-
ponent in every other phase, so chemical 
potentials are given by tangents to all three 
phases. This is a univariant system, so specify-
ing either temperature, pressure, or the com-
position of a phase fixes other variables in the 
system. Because of this, if we move to a 
slightly higher or lower temperature at fixed 
pressure, one of the phases must be eliminated 
in a phase elimination reaction. If the liquid 
is the liquid in between the two solids in com-
position, the reaction is known as a eutectic, 
which is the lowest temperature at which the 
liquid can exist. Moving to a higher tempera-
ture would result in elimination of one of the 
solids. If, alternatively, the liquid is not 
between two solids (for example, if the curves 
L and S2 in Figure 4.12a were switched), the 
reaction would be known as a peritectic, and 
moving to lower temperature eliminates one 
of the solids. Thus, it is possible for a liquid 
to persist below a peritectic if the composition 
is right, but a liquid will never persist at equi-
librium below a euctectic. Figure 4.12b is a 
eutectic in a system where the two solids are 
the phases of pure components 1 and 2. A line 
drawn between the free energies of the pure 
components is also tangential to the liquid 
curve.

condition is described by µ µi i
s1 =  (eqn. 3.17). 

For i = 2, this means the tangent to the free 
energy curve for the melt must intersect the 
X2 = 1 line at µ2

s  as shown. In other words, 
the chemical potential of component 2 in the 
melt must be equal to the chemical potential 
of component 2 in the solid. Again, this 
diagram is valid for only one temperature; at 
any other temperature, the free energy curve 
for the liquid would be different, but the com-
position of this new liquid in equilibrium with 
solid S2 would still be found by drawing a 
tangent from S2 to the free energy curve of 
the liquid. At sufficiently high temperature, 
any tangent would always intersect below  
S2. The temperature at which this first occurs 
is the melting temperature of S2 (because it is 
the point at which the free energy of a liquid 
of pure 2 is less than the solid). The shaded 
region shows the compositions of systems 
that will have a combination of solid S2 and 
liquid L′ as their equilibrium phases at this 
temperature.

We can also think of the tangent line as 
defining the free energy of a mechanical 
mixture of S2 and L′. In the range of composi-
tions denoted by the shaded region, this 
mixture has a lower free energy than the 
liquid solution, hence at equilibrium we 
expect to find this mixture rather than the 
liquid solution.

Figure 4.11b illustrates a system with a 
liquid plus a solid solution, each of which has 
its own G–X curve. Again, the equilibrium 
condition is µ µi

l
i
s= , so the compositions of 

the coexisting liquid and solid are given by a 
tangent to both curves. Since the system is 
divariant and we have fixed P and T, the com-
positions of the solutions are fixed. All system 
compositions in the shaded region can be 
accommodated by a mixture of liquid and 
solid. Compositions lying to the left of the 
region would have only a liquid; composi-
tions to the right of the shaded region would 
be accommodated by a solid solution.

Figure 4.11c illustrates the case of two 
immiscible solids (pure components 1 and 2). 
The molar free energy of the system is simply 
that of a mechanical mixture of S1 and S2: a 
straight line drawn between the free energy 
points of the two phases.

Figure 4.11d illustrates the case of a limited 
solution. We have chosen to illustrate a solid 
solution, but the diagram would apply equally 
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Figure 4.12 Two univariant systems: (a) a 
liquid plus two solid solutions, and (b) two 
pure solids and a liquid. Since these systems are 
univariant, they occur only at one fixed T if P 
is fixed. After Nordstrom and Munoz (1986). 
With permission from John Wiley & Sons. 
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below that of the solid, indicating the liquid 
to be the stable phase for all compositions.

At a somewhat lower temperature (T2), we 
see that the curves for the solid and liquid 
intersect at some intermediate composition. 
To the right, the curve for the solid is lower 
than that of the liquid, and tangents to the 
solid curve extrapolated to both XAb = 1 and 
XAn = 1 are always below the curve for the 
liquid, indicating the solid is the stable phase. 
As we move toward Ab (left) in composition, 
tangents to the solid curve eventually touch 
the curve for the liquid. The point where the 
tangent touches each curve gives the composi-
tions of the liquid and the solid stable at this 
temperature. In the compositional range 
between the points where the tangent touches 
the two curves, the tangent is below both 
curves, thus a mechanical mixture of solid 
and liquid is stable over this compositional 
range at this temperature. For compositions 
to the left of the point where the tangent 
touches the liquid curve, the liquid curve is 
lower than both the solid curve and a tangent 
to both, so it is stable relative to both the solid 
and any mixture of solid and liquid.

Going to progressively lower temperatures 
(e.g., T3), the points where a tangent intersects 
the two curves move toward Ab (to the left). 
Eventually, at a sufficiently low temperature 
(T4), the curve for the solid is everywhere 
below that of the liquid and only solid solu-
tion is stable. By extracting information from 
G–X curves at a number of temperatures, it 
is possible to reconstruct the phase diagram 
shown at the bottom of Figure 4.13.

Since both the solid and liquid show  
complete miscibility in this system, we will 
make the simplifying assumption that both 
solutions are ideal and do an approximate 
mathematical treatment. We recall that the 
condition for equilibrium was:

 µ µα β
i i=

We can express the chemical potential of each 
component in each phase as:

 µ µα α α
i i

o
iRT X= + ln  (4.28)

Combining these relationships, we have:
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4.4.2.1 An example of a simple binary system 
with complete solution: albite–anorthite

Phase diagrams in T–X space can be con-
structed by analyzing G–X diagrams at a 
series of temperatures. Let’s examine how this 
can be done in the case of a relatively simple 
system of two components, albite (NaAlSi3O8) 
and anorthite (CaAl2Si2O8), whose solid (pla-
gioclase) and liquid exhibit complete solid 
solution. Figure 4.13 shows G–X diagrams 
for various temperatures as well as a T–X 
phase diagram for this system. Since both the 
solid and liquid exhibit complete solution, we 
need to consider G–X curves for both.

We start at the highest point at which liquid 
and solid coexist, Tm (T1) for anorthite. Here 
the solid and liquid curves both have the same 
value at XAn = 1, and they are at equilibrium. 
A G–X plot above this temperature would 
show the curve for the liquid to be everywhere 
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Figure 4.13 G–X diagrams and a T–X phase 
diagram for the plagioclase–liquid system. 
From Richardson and McSween (1989). 
Reproduced with permission.
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that, non-ideal systems can be treated in a 
manner exactly analogous to the earlier 
treatment.

4.5 GEOTHERMOMETRY AND 
GEOBAROMETRY

An important task in geochemistry is estimat-
ing the temperature and pressure at which 
mineral assemblages equilibrate. The impor-
tance extends beyond petrology to tectonics 
and all of geology because it reveals the condi-
tions under which geological processes occur. 
Here we take a brief look at the thermody-
namics underlying geothermometry and geo-
barometry (since most reactions are both 
temperature and pressure dependent, it is 
perhaps more accurate to use the term “ther-
mobarometer”). We have space to consider 
just a few relatively simple thermobarometers 
based on the composition of mineral pairs. 
Particularly in complex metamorphic systems, 
modern thermobarometry involves simultane-
ously solving for the equilibrium among many 
phases, and requires relatively sophisticated 
computer algorithms such as perplex (Con-
nolly, 1989) or thermocalc (Powell and 
Holland, 2008). Those approaches, however, 
involve the same fundamental principles as 
the simple geobarometers we consider below. 
Here we focus on “chemical” geobarometers 
that depend on the distribution of chemical 
components between phases. In Chapter 9, 
we will see that temperatures can also be 
deduced from the distribution of isotopes of 
an element between phases.

Geothermometry and geobarometry involve 
two nearly contradictory assumptions. The 
first is that the mineral assemblage of interest 
is an equilibrium one, and the second is that 
the system did not re-equilibrate during the 
passage through lower P and T conditions 
that brought the rock to the surface where it 
could be collected. As we will see in the next 
chapter, reaction rates depend exponentially 
on temperature, hence these assumptions are 
not quite as contradictory as they might seem.

4.5.1 Theoretical considerations

In general, geobarometers and geothermom-
eters make use of the pressure and tempera-
ture dependence of the equilibrium constant, 
K. In Section 3.9 we found that ΔG° = −RT 

and
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
ln  (4.30)

Here our standard states are the pure end 
members of the melt and solid. The left side 
of both of these equations corresponds to the 
standard free energy change of crystallization, 
thus:
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and
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Both sides of these equations reduce to 0  
if and only if X Xi i

s! = = 1 and T = Tm. 
Rearranging:

 X X eAb
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G RTm

Ab= −! ∆ /  (4.33)

 X X eAn
s

An
G RTm
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Thus the fraction of each component in the 
melt can be predicted from the composition 
of the solid and thermodynamic properties  
of the end-members. Since X XAn Ab

! != −1  and 
X XAn

s
Ab
s= −1 , we can combine eqns. 4.33 and 

4.34 to obtain:
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and rearranging yields:
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The point is that the mole fraction of any 
component of any phase in this system can be 
predicted from the thermodynamic properties 
of the end-members. We must bear in mind 
that we have treated this as an ideal system, 
so we have ignored any Gexcess term. Neverthe-
less, the ideal treatment is relatively successful 
for the plagioclase system. For non-ideal 
systems, we merely replace mole fraction in 
the above equations with activity. Provided 
they are known, interaction parameters can 
be used to calculate activity coefficients (e.g., 
eqns. 4.18 or 4.12 as the case may be). Beyond 
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The following discussion presents a few 
examples of useful chemical geothermometers 
and geobarometers. It is not an exhaustive 
treatment, nor should it be inferred that those 
examples discussed are in any way superior 
to other geothermometers and geobarome-
ters. Reviews by Essene (1989), Putirka 
(2008), Anderson et al. (2008), Blundy and 
Cashman (2008), and Powell and Holland 
(2008) summarize a wide range of igneous 
and metamorphic thermobarometers.

4.5.2 Practical thermobarometers

4.5.2.1 Univariant reactions and displaced 
equilibria

We can broadly distinguish three main types 
of thermobarometers. The first is the univari-
ant reaction, in which the phases have fixed 
compositions. They are by far the simplest, 
and often make good geobarometers as the 
ΔV of such reactions is often large. Examples 
include the graphite–diamond transition, any 
of the SiO2 transitions (Figure 4.7), and the 
transformations of Al2SiO5, shown in Figure 
4.14. While such thermobarometers are 
simple, their utility for estimating tempera-
ture and pressure is limited. This is because 
exact temperatures and pressures can be 
obtained only if two or more phases coexist, 
for example, kyanite and andalusite in Figure 
4.14. If kyanite and andalusite are both found 

ln K. Assuming that ΔCp and ΔV of the reac-
tion are independent of temperature and pres-
sure, we can write:
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(4.37)

where the standard state of all components is 
taken as the pure phase at the temperature 
and pressure of interest, and the enthalpy, 
entropy and volume changes are for the tem-
perature of interest and a reference pressure 
(generally 0.1 MPa).

Solving eqn. 4.37 for ln K and differentiat-
ing the resulting equation with respect to tem-
perature and pressure leads to the following 
relations:
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and
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 (4.39)

These equations provide us with the criteria 
for reactions that will make good geother-
mometers and geobarometers. For a good 
geothermometer, we want the equilibrium 
constant to depend heavily on T, but be 
approximately independent of P. Looking at 
eqn. 4.38, we see this means the ΔH term 
should be as large as possible and the ΔV term 
as small as possible. A fair amount of effort 
was devoted to the development of a geother-
mometer based on the exchange of Fe and Mg 
between olivine and pyroxenes in the late 
1960s. The effort was abandoned when it was 
shown that the ΔH for this reaction was very 
small. As a rule, a reaction should have a ΔH° 
of at least 1 kJ to be a useful geothermometer. 
For a good geobarometer, we want the ΔV 
term to be as large as possible. Even though 
the rhodonite ([Mn,Fe,Ca]SiO3) and pyrox-
mangite ([Mn,Fe]SiO3) pairs commonly occur 
in metamorphic rocks, the reaction rhodonite 
→ pyroxmangite does not make a useful geo-
barometer because the ΔV of reaction is only 
0.2 cc/mol. In general, a reaction should have 
a ΔV of greater than 2 cc/mol if it is to be used 
for geobarometry.
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Figure 4.14 Phase diagram for Al2SiO5 
(kyanite–sillimanite–andalusite) as determined 
by Holdaway (1971). Reprinted by permission 
of the American Journal of Science.



130 GEOCHEMISTRY

extensive experimental investigations. The 
general principle is illustrated in Figure 4.15, 
which shows the concentration of Al in 
orthopyroxene (opx) coexisting with olivine 
(forsterite) and an aluminous phase, anorth-
ite, spinel, or garnet. The Al content of opx 
depends almost exclusively on pressure in the 
presence of anorthite, is essentially independ-
ent of pressure in the presence of spinel, and 
depends on both temperature and pressure in 
the presence of garnet. Orthopyroxene–garnet 
equilibrium has proved to be a particularly 
useful geobarometer.

Garnet is an extremely dense phase. So we 
might guess that the ΔV of reactions that form 
it will be comparatively large, and therefore 
that it is potentially a good geobarometer. The 
concentration of Al in opx in equilibrium 
with garnet may be used as a geobarometer if 
temperature can be independently determined. 
Although there has been a good deal of sub-
sequent work and refinement of this geoba-
rometer, the underlying thermodynamic 
principles are perhaps best illustrated by con-
sidering the original work of Wood and Banno 
(1973).

Wood and Banno (1973) considered the 
following reaction:

 Mg Si O MgAl SiO Mg Al Si O2 2 6 2 6 3 2 3 12+ "  
(4.40)

 opx solid solution pyrope garnet"

In developing a geobarometer based on this 
reaction, they had to overcome a number of 
problems. First, the substitution of Al in 
orthopyroxene is a coupled substitution. For 
each atom of Al substituting in the M1* octa-
hedral site, there must be another Al atom 
substituting for SiO2 in the tetrahedral site. 
Second, there was a total lack of thermody-
namic data on the MgAl2SiO6 phase compo-
nent. Data was lacking for a good reason: the 
phase does not exist and cannot be synthe-
sized as a pure phase. Another problem was 
the apparent non-ideal behavior of the system, 
which was indicated by orthopyroxenes in 
Fe- and Ca-bearing systems containing less 
alumina than in pure MgO systems at the 
same pressure.

in a rock, we can determine either tempera-
ture or pressure if we can independently 
determine the other. Where three phases, 
kyanite, sillimanite, and andalusite, coexist 
the system is invariant and P and T are fixed. 
If only one phase occurs, for example silli-
manite, we can only set a range of values for 
temperature and pressure. Unfortunately, the 
latter case, where only one phase is present, 
is the most likely situation. It is extremely rare 
that kyanite, sillimanite, and andalusite occur 
together.

The term displaced equilibria refers to vari-
ations in the temperature and pressure of a 
reaction that result from appreciable solution 
in one or more phases. Thermobarometers 
based on this phenomenon are more useful 
than univariant reactions because the assem-
blage can coexist over a wide range of P and 
T conditions. In the example shown in Figure 
4.15, the boundaries between garnet-bearing, 
spinel-bearing, and plagioclase-bearing assem-
blages are curved, or “displaced” as a result 
of the solubility of Al in enstatite. In addition 
to the experimental calibration, determina-
tion of P and T from displaced equilibria 
requires (1) careful determination of phase 
composition and (2) an accurate solution 
model.

Geobarometers based on the solubility of 
Al in pyroxenes have been the subject of 
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Figure 4.15 Isopleths of Al in orthopyroxene 
(thin red lines; weight percent) coexisting with 
forsterite plus an aluminous phase in the 
CMAS (Ca-Mg-Al-Si) system. After Gasparik 
(1984b). With permission from Elsevier.

* The two octahedral sites in pyroxene normally occupied by metal ions such as Mg, Fe, and Ca are slightly 
different; the smaller of the two is labeled M1 and the larger of the two, occupied by Ca in diopside, is labeled M2.




