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phases on the left side of the equation) are 
consumed to leave only products. Indeed, this 
is generally not so. Substituting eqn. 3.46 into 
3.82 we obtain:

ν µ νi i
o

i

i i

i

RT a∑ ∑+ =ln 0  (3.83)

or:

 ν µ ν
i l

o
i

i

RT a i∑ ∏+ =ln 0  (3.84)

The first term is simply the standard state 
Gibbs free energy change, ΔG°, for the reac-
tion. There can be only one fixed value of ΔG° 
for a fixed standard state pressure and tem-
perature, and therefore of the activity prod-
ucts. The activity products are therefore called 
the equilibrium constant K, familiar from 
elementary chemistry:

3.9.1 Derivation and definition

Consider a chemical reaction such as:

 aA bB cC dD+ +!

carried out under isobaric and isothermal 
conditions. The Gibbs free energy change of 
this reaction can be expressed as:

 ∆G c d a bc d a b= + − −µ µ µ µ  (3.81)

At equilibrium, ΔG must be zero. A general 
expression then is:

 ∆ = =∑G i i

i

ν µ 0  (3.82)

where νi is the stoichiometric coefficient of 
species i. Equilibrium in such situations need 
not mean that all the reactants (i.e., those 

wt  cation wt  oxide
atomic wt cation formula units cation i

. % . %
.= × ∞ nn oxide

molecular wt  oxide.

Next, we calculate the moles of cation:

moles cation
wt  cation

atomic wt cation
= . %

.

Combining these two equations, the “atomic wt. cation” terms cancel and we have:

moles cation wt  oxide
formula units cation in oxide

molecular
= ×%

  wt. oxide

Next, we want to calculate the number of moles of each cation per formula unit. A general formula 
for feldspar is: XY4O8, where X is Na, K, or Ca in the “A” site and Y is Al or Si in the tetrahedral 
site. So to calculate formula units in the “A” site, we divide the number of moles of Na, K, and Ca 
by the sum of moles of Na, K, and Ca. To calculate formula units in the tetrahedral site, we divide 
the number of moles of Al and Si by the sum of moles of Al and Si and multiply by 4, since there 
are 4 ions in this site. Since the number of oxygens is constant, we can refer to these quantities as 
the moles per 8 oxygens. The table shows the results of these calculations. The activity of albite is 
equal to the mole fraction of Na, 0.07; the activity of anorthite is 0.93.

Cation formula units

Mol. wt.
oxide

Moles
cation

Moles per
8 oxygens

Si 60.06 0.7385 2.077
Al 101.96 0.6836 1.923
Ca 56.08 0.3322 0.926
Na 61.98 0.0255 0.071
K 94.2 0.0011 0.003
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Example 3.6 Manipulating reactions and equilibrium constant expressions

Often we encounter a reaction for which we have no value of the equilibrium constant. In many 
cases, however, we can derive an equilibrium constant by considering the reaction of interest to be 
the algebraic sum of several reactions for which we do have equilibrium constant values. For 
example, the concentration of carbonate ion is often much lower than that of the bicarbonate ion. 
In such cases, it is more convenient to write the reaction for the dissolution of calcite as:

 CaCO H O Ca HCO OH3 2
2

3+ + ++ − −!  (3.87)

Given the following equilibrium constants, what is the equilibrium constant expression for the above 
reaction?
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Answer: Reaction 3.87 can be written as the algebraic sum of three reactions:
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The initial inclination might be to think that if we can sum the reactions, the equilibrium constant 
of the resulting reaction is the sum of the equilibrium constants of the components. However, this 
is not the case. Whereas we sum the reactions, we take the product of the equilibrium constants. 
Thus our new equilibrium constant is:

K
K K

K
H O= cal 2

2

For several reasons (chief among them that equilibrium constants can be very large or very small 
numbers), it is often more convenient to work with the log of the equilibrium constant. A commonly 
used notation is pK. pK is the negative logarithm (base 10) of the corresponding equilibrium constant 
(note this notation is analogous to that used for pH). The pK’s sum and our equilibrium constant 
expression is:

pK pK pK pKcal H O= − −2 2

state, but there are pitfalls. In general, there 
are two kinds of standard states, fixed 
pressure–temperature standard states and 
variable P–T standard states. If you chose a 
fixed temperature standard state, then eqn. 
3.86 is only valid at that standard-state tem-
perature. If you chose a variable-temperature 
standard state, then eqn. 3.86 is valid for all 
temperatures, but ΔG° is then a function of 
temperature. The same goes for pressure. 
Whereas most thermodynamic quantities we 
have dealt with thus far are additive, equi-
librium constants are multiplicative (see 
Example 3.6).

 K = ∏ai
i

iν  (3.85)

Substituting eqn. 3.85 into 3.84 and rearrang-
ing, we see that the equilibrium constant is 
related to the Gibbs free energy change of the 
reaction by the equation:

 ∆ = −G RTr
o lnK  (3.86)

At this point, it is worth saying some 
more about “standard states”. We men-
tioned that one is free to choose a standard 
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3.9.2 The Law of Mass Action

Let’s attempt to understand the implications 
of eqn. 3.85. Consider the dissociation of car-
bonic acid, an important geologic reaction:

H CO HCO H2 3 3= +− +

For this particular case, eqn. 3.85 is expressed 
as:

 K HCO H

H CO
=

− +a a

a
3

2 3

The right side of the equation is a quotient, 
the product of the activities of the products 
divided by the product of the activities of the 
reactants, and is called the reaction quotient. 
At equilibrium, the reaction quotient is equal 
to the equilibrium constant. The equilibrium 
constant therefore allows us to predict the 
relative amounts of products and reactants 
that will be present when a system reaches 
equilibrium.

Suppose now that we prepare a beaker of 
carbonic acid solution; it is not hard to 
prepare: we just allow pure water to equili-
brate with the atmosphere. Let’s simplify 
things by assuming that this is an ideal solu-
tion. This allows us to replace activities with 
concentrations (the concentration units will 
dictate how we define the equilibrium con-
stant; see later). When the solution has reached 
equilibrium, just enough carbonic acid will 
have dissociated so that the reaction quotient 
will be equal to the equilibrium constant. 
Now let’s add some H+ ions, perhaps by 
adding a little HCl. The value of the reaction 
quotient increases above that of the equilib-
rium constant and the system is no longer in 
equilibrium. Systems will always respond to 
disturbances by moving toward equilibrium 
(how fast they respond is another matter, and 
one that we will address in Chapter 5). The 
system will respond by adjusting the concen-
trations of the three species until equilibrium 
is again achieved; in this case, hydrogen and 
bicarbonate ions will combine to form car-
bonic acid until the reaction quotient again 
equals the equilibrium constant. We can also 
see that had we reduced the number of hydro-
gen ions in the solution (perhaps by adding a 
base), the reaction would have been driven 
the other way (i.e., hydrogen ions would be 
produced by dissociation). Equation 3.85 is 

known as the Law of Mass Action, which we 
can state more generally as: changing the con-
centration of one species in a system at equi-
librium will cause a reaction a direction that 
minimizes that change.

3.9.2.1 Le Chatelier’s principle

We can generalize this principle to the effects 
of temperature and pressure as well. Recall 
that:
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and
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∂
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


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Sr

T
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and that systems respond to changes imposed 
on them by minimizing G. Thus a system 
undergoing reaction will respond to an 
increase in pressure by minimizing volume. 
Similarly, it will respond to an increase in 
temperature by maximizing entropy. The 
reaction ice → water illustrates this. If the 
pressure is increased on a system containing 
water and ice, the equilibrium will shift to 
favor the phase with the least volume, which 
is water (recall that water is unusual in that 
the liquid has a smaller molar volume than 
the solid). If the temperature of that system is 
increased, the phase with the greatest molar 
entropy is favored, which is also water.

Another way of looking at the effect of 
temperature is to recall that:

 ∆ ≥ ∆
S

Q
T

Combining this with eqn. 2.129, we can see 
that if a reaction A + B → C + D generates 
heat, then increasing the temperature will 
retard formation of the products, that is, the 
reactants will be favored.

A general statement that encompasses both 
the law of mass action and the effects we have 
just discussed is then:

When perturbed, a system reacts to minimize 
the effect of the perturbation.

This is known as Le Chatelier’s principle.
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with Kγ defined analogously to Kλ. The differ-
ence between the apparent equilibrium con-
stant and the distribution coefficient is that 
we have defined the former in terms of molal-
ity and the latter in terms of mole fraction. 
Igneous geochemists tend to use the distribu-
tion coefficient, aqueous geochemists the 
apparent equilibrium constant.

Another special form of the equilibrium 
constant is the solubility product. Consider 
the dissolution of NaCl in water. The equilib-
rium constant is:

 K Na Cl

NaCl
=

+ −a a

a
aq aq

s

where aq denotes the dissolved ion and s 
denotes solid. Because the activity of NaCl in 
pure sodium chloride solid is 1, this reduces 
to:

 K KNa Cl sp= =+ −a a
aq aq  (3.93)

where Ksp is called the solubility product. You 
should note that it is generally the case in dis-
solution reactions such as this that we take 
the denominator (i.e., the activity of the solid) 
to be 1 (see Example 3.7).

3.9.4 Henry’s Law and gas solubilities

Consider a liquid, water for example, in equi-
librium with a gas, the atmosphere for 
example. Earlier in this chapter, we found that 
the partial pressure of component i in the gas 

3.9.3 KD values, apparent equilibrium 
constants, and the solubility product

It is often difficult to determine activities for 
phase components or species, and therefore it 
is more convenient to work with concentra-
tions. We can define a new “constant”, the 
distribution coefficient, KD, as:

 KD = ∏Xi
i

iν  (3.88)

KD is related to the equilibrium constant K as:

 K
K
KD = eq

λ
 (3.89)

where Kλ is simply the ratio of activity 
coefficients:

 Kλ
νλ= ∏ i

i

i  (3.90)

Distribution coefficients are functions of tem-
perature and pressure, as are the equilibrium 
constants, though the dependence of the two 
may differ. The difference is that KD values are 
also functions of composition.

An alternative to the distribution coeffi-
cient is the apparent equilibrium constant, 
which we define as:

 Kapp
i

i

m i= ∏ ν  (3.91)

K
K
K

app eq=
γ

 (3.92)

Example 3.7 Using the solubility product

The apparent (molar) solubility product of fluorite (CaF2) at 25°C is 3.9 × 10−11. What is the con-
centration of Ca2+ ion in groundwater containing 0.1 mM of F− in equilibrium with fluorite?

Answer: Expressing eqn. 3.93 for this case we have:

K
Ca F

CaF
Ca Fsp Fl−

+ −
+ −= =[ ][ ]

[ ]
[ ][ ]

2 2

2

2 2

We take the activity of CaF2 as 1. Rearranging and substituting in values, we have:
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3.9.5 Temperature dependence of  
equilibrium constant

Since ΔG° = ΔH° − TΔS° and ∆G Tr° = −R Kln , 
it follows that in the standard state, the equi-
librium constant is related to enthalpy and 
entropy change of reaction as:

 lnK = − ∆ + ∆H
RT

S
R

r
o

r
o

 (3.95)

Equation 3.95 allows us to calculate an equi-
librium constant from fundamental thermo-
dynamic data (see Example 3.8). Conversely, 
we can estimate values for ΔS° and ΔH° from 
the equilibrium constant, which is readily cal-
culated if we know the activities of reactants 
and products. Equation 3.95 has the form:

 lnK = +a
T

b

could be related to the concentration of a 
component i in the liquid by Henry’s Law:

 P h Xi i i=  (3.10)

where h is Henry’s Law constant. We can 
rearrange this as:

 h
P
X

i
i

i

=  (3.94)

Notice that this equation is analogous in 
form to the equilibrium constant expression 
(3.88), except that we have used a partial 
pressure in place of one of the concentrations. 
A Henry’s Law constant is thus a form of 
equilibrium constant used for gas solubility: 
it relates the equilibrium concentration of a 
substance in a liquid solution to that compo-
nent’s partial pressure in a gas.

Example 3.8 Calculating equilibrium constants and equilibrium concentrations

The hydration of olivine to form chrysotile (a serpentine mineral) may be represented in a pure Mg 
system as:

H O H Mg SiO Mg Si O OH Mg2 2 4 3 2 5 4
22 2+ + ( ) ++ +!

If this reaction controlled the concentration of Mg2+ of the metamorphic fluid, what would be the 
activity of Mg2+ in that fluid if it had a pH of 4.0 at 300°C?

Answer: Helgeson (1967) gives the thermodynamic data shown in the adjacent table for the 
reactants at 300°C. From these data, we use Hess’s Law to calculate ΔHr and ΔSr as −231.38 kJ and 
−253.01 J/K respectively. The equilibrium constant for the reaction may be calculated as:

Κ = − ∆ + ∆



 = − − ×

×
+exp exp

.
.

.
.

H
RT

S
R

r
o

r
o 231 38 10

8 134 573
253 01
8

3

3314
7 53 107



 = ×.

The equilibrium constant for this reaction can be written as: Κ =
+

+

a a

a a a
Cry

Fo

Mg

H H O

2

2
2 2

 which reduces to 

Κ =
+

+

a

a
Mg

H

2

2
 if we take the activities of water, chrysotile, and forsterite as 1. Since pH aH= − +log , we 

may rearrange and obtain the activity of the magnesium ion as:

a aMg H2
2 7 4 2 17 53 10 10 7 53 10+ += = × × = ×− × −Κ . .

Species ΔH° (kJ) S° (J/K)

Mg3Si2O5(OH)4 −4272.87 434.84
Mg2+ −366.46 109.05
H+ 44.87 106.68
Mg2SiO4 −2132.75 186.02
H2O −232.19 211.50
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where a and b are ΔH°/R and ΔS°/R respec-
tively. If we can assume that ΔH and ΔS are 
constant over some temperature range (this is 
likely to be the case provided the temperature 
interval is small), then a plot of ln K vs. 1/T 
will have a slope of ΔH°/R and an intercept 
of ΔS°/R. Thus measurements of ln K made 
over a range of temperatures and plotted vs. 
1/T provide estimates of ΔH° and ΔS°. Even 
if ΔH and ΔS are not constant, they can be 
estimated from the instantaneous slope and 
intercept of a curve of ln K plotted against 
1/T. This is illustrated in Figure 3.17, which 
shows measurements of the solubility con-
stant for barite (BaSO4) plotted in this fashion 
(though in this case the log10 rather than 
natural logarithm is used). From changes of 
ΔH and ΔS with changing temperature and 
knowing the heat capacity of barite, we can 
also estimate heat capacities of the Ba2+ and 
SO4

2− ions, which would obviously be difficult 
to measure directly. We can, of course, also 
calculate ΔG directly from eqn. 3.86. Thus a 
series of measurements of the equilibrium 

Figure 3.17 Log of the solubility constant of 
barite plotted against the inverse of 
temperature. The slope of a tangent to the 
curve is equal to −ΔH/R. The intercept of the 
tangent (which occurs at 1/T = 0 and is off 
the plot) is equal to ΔS/R. After Blount 
(1977). With permission from Mineralogical 
Society of America.

constant for simple systems allows us deduce 
the fundamental thermodynamic data needed 
to predict equilibrium in more complex 
systems.

Taking the derivative with respect to tem-
perature of both sides of eqn. 3.95 (while 
holding pressure constant), we have:

 
∂

∂


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RTP

r
o

2  (3.96)

This equation is known as the van’t Hoff 
equation.

3.9.6 Pressure dependence of  
equilibrium constant

Since

 
∂∆

∂




 = ∆G

P
Vr

T

and

 ∆ = −G RTr
o lnK

then
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 (3.97)

If ΔVr does not depend on pressure, this equa-
tion can be integrated to obtain:

 ln ln ( )K KP P
r
oV

RT
P P2 1 1 2= − ∆ −

This assumption will be pretty good for solids 
because their compressibilities are very low, 
but slightly less satisfactory for reactions 
involving liquids (such as dissolution), because 
they are more compressible. This assumption 
will be essentially totally invalid for reactions 
involving gases, because their volumes are 
highly pressure-dependent.

3.10 PRACTICAL APPROACH TO 
ELECTROLYTE EQUILIBRIUM

With the equilibrium constant now in our 
geochemical toolbox, we have the tools neces-
sary to roll up our sleeves and get to work on 
some real geochemical problems. Even setting 
aside non-ideal behavior, electrolyte solutions, 
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ion. Even if CaCl2 is not the only source of 
these ions in solution, its congruent dissolu-
tion allows us to write the mass balance con-
straint in the form of a differential equation:

 ∂
∂

=
−

+
Cl

Ca2 2

which just says that CaCl2 dissolution adds 
two Cl− ions to solution for every Ca2+ ion 
added.

By carefully choosing components and 
boundaries of our system, we can often write 
conservation equations for components. For 
example, suppose we have a liter of water 
containing dissolved CO2 in equilibrium with 
calcite (for example, groundwater in lime-
stone). In some circumstances, we may want 
to choose our system as the water plus the 
limestone, in which case we may consider Ca 
conserved and write:

ΣCa Ca CaCOaq s= ++2
3

where CaCO3s is calcite (limestone) and Caaq
2+ 

is aqueous calcium ion. We may want to avoid 
choosing carbonate as a component and chose 
carbon instead, since the carbonate ion is not 
conserved because of association and disso-
ciation reactions such as:

CO H HCO3
2

3
− + −+ !

Choosing carbon as a component has the dis-
advantage that some carbon will be present 
as organic compounds, which we may not 
wish to consider. A wiser choice is to define 
CO2 as a component. Total CO2 would then 
include all carbonate species as well as CO2 
(very often, total CO2 is expressed instead as 
total carbonate). The conservation equation 
for total CO2 for our system would be:

ΣCO CaCO CO H CO

HCO CO
s2 3 2 2 3

3 3
2

= + +
+ +− −

Here we see the importance of the distinction 
we made between components and species 
earlier in the chapter. Example 3.9 illustrates 
the use of mass balance.

3.10.3 Electrical neutrality

There is an additional condition that electro-
lyte solutions must meet: electrical neutrality. 

geologic ones in particular, often have many 
components and can be extremely complex. 
Predicting their equilibrium state can there-
fore be difficult. There are, however, a few 
rules for approaching problems of electrolyte 
solutions that, when properly employed, 
make the task much more tractable.

3.10.1 Choosing components and species

We emphasized at the beginning of the chapter 
the importance of choosing the components 
in a system. How well we choose components 
will make a difference to how easily we can 
solve a given problem. Morel and Hering 
(1993) suggested these rules for choosing 
components and species in aqueous systems:

1. All species should be expressible as stoi-
chiometric functions of the components, 
the stoichiometry being defined by chemi-
cal reactions.

2. Each species has a unique stoichio-
metric expression as a function of the 
components.

3. H2O should always be chosen as a 
component.

4. H+ should always be chosen as a 
component.

H+ activity, or pH, is very often the critical 
variable, also called the “master variable”, in 
problems in natural waters. In addition, recall 
that we define the free energy of formation of 
H+ as 0. For these reasons, it is both conven-
ient and important that H+ be chosen as a 
component.

3.10.2 Mass balance

This constraint, also sometimes called mole 
balance, is a very simple one, and as such it 
is easily overlooked. When a salt is dissolved 
in water, the anion and cation are added in 
stoichiometric proportions. If the dissolution 
of the salt is the only source of these ions in 
the solution, then for a salt of composition 
Cv+Av− we may write:

 ν ν− +[ ] = [ ]C A  (3.98)

Thus, for example, for a solution formed by 
dissolution of CaCl2 in water, the concentra-
tion of Cl− ion will be twice that of the Ca2+ 
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As Example 3.10 illustrates, the electrical 
neutrality constraint can prove extremely 
useful.

3.10.4 Equilibrium constant expressions

For each chemical reaction in our system, we 
can write one version of eqn. 3.85. This allows 
us to relate the equilibrium activities of the 
species undergoing reaction in our system to 
one another.

Solution of aqueous equilibria problems 
often hinge on the degree to which we can 
simplify the problem by minimizing the 
number of equilibrium constant expressions 
we must solve. For example, H2SO4 will be 
completely dissociated in all but the most 
acidic natural waters, so we need not deal 
with reactions between H+, SO4

2−, HSO4
−, and 

H2SO4, and need not consider the latter two 
in our list of species. Similarly, though many 
natural waters contain Na+ and Cl−, NaCl will 
precipitate only from concentrated brines, so 
we generally need not consider reaction 
between NaCl, Na+, and Cl−.

Thus the sum of the positive charges in solu-
tions must equal the sum of the negative ones, 
or:

 m zi i

i
∑ = 0  (3.99)

While this presents some experimental obsta-
cles, for example, we cannot add only Na+ ion 
to an aqueous solution while holding other 
compositional parameters constant, it also 
allows placement of an additional mathemati-
cal constraint on the solution. It is often con-
venient to rearrange eqn. 3.99 so as to place 
anions and cations on different sides of the 
equation:

 m z m zi i

i

n n

n

+ + − −∑ ∑=  (3.100)

As an example, consider water in equilibrium 
with atmospheric CO2 and containing no 
other species. The charge balance equation in 
this case is:

H OH HCO ] CO+ − − +[ ] = [ ] + +[ [ ]3 22

Example 3.9 Soil organic acid

Consider soil water with a pH of 7 containing a weak organic acid, which we will designate HA, 
at a concentration of 1 × 10−4 M. If the apparent dissociation constant of the acid is 10−4.5, what 
fraction of the acid is dissociated?

Answer: We have two unknowns: the concentration of the dissociated and undissociated acid and 
we have two equations: the equilibrium constant expression for dissociation, and the mass balance 
equation. We will have to solve the two simultaneously to obtain the answer. Our two equations 
are:

K
H A

HA
HA HA Adis = = = [ ] + [ ]

+ −
− −[ ][ ]

[ ]
.10 4 5 Σ

Solving the dissociation constant expression for [A−] we have:

[ ]
[ ]

[ ]
A

HA K
H

dis−
+=

Then solving the conservation equation for [HA] and substituting, we have

[ ]
( [ ])

[ ]
A

HA A K
H

dis−
−

+= −Σ

Setting H+ to 10−7 and ΣHA to 10−4, we calculate [A−] as 3.16 · 10−5 M, so 31.6% of the acid is 
dissociated.
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Example 3.10 Determining the pH of rainwater from its composition

Determine the pH of the two samples of rain in the adjacent table. Assume that sulfuric and nitric 
acid are fully dissociated and that the ions in the table, along with H+ and OH−, are the only ones 
present.

Answer: This problem is simpler than it might first appear. Given the stated conditions, there are 
no reactions between these species that we need to concern ourselves with. To solve the problem, 
we observe that this solution must be electrically neutral: any difference in the sum of cations and 
anions must be due to one or both of the two species not listed: OH− and H+.

We start by making an initial guess that the rain is acidic and that the concentration of H+ will 
be much higher than that of OH−, and that we can therefore neglect the latter (we will want to verify 
this assumption when we have obtained a solution). The rest is straightforward. We sum the product 
of charge times concentration (eqn. 3.99) for both cations and anions and find that anions exceed 
cations in both cases: the difference is equal to the concentration of H+. Taking the log of the con-
centration (having first converted concentrations to M from µM by multiplying by 10−6) we obtain 
a pH of 4.6 for the first sample and 3.14 for the second.

Now we need to check our simplifying assumption that we could neglect OH−. The equilibrium 
between OH− and H+ is given by:

K H OH 1= =+ − −[ ][ ] 0 14

From this we compute [OH−] as 10−10 in the first case and 10−11 in the second. Including these would 
not change the anion sum significantly, so our assumption was justified.

Analysis of rainwater

Rain 1
(µM)

Rain 2
(µM)

Na 9 89
Mg 4 16
K 5 9
Ca 8 37
Cl 17 101
NO3 10 500
SO4 18 228

Charge balance for rainwater

Rain 1 Rain 2

! cations 38 204

! anions 63 1057
Δ 25 853
pH 4.60 3.07

Carbonate is a somewhat different matter. 
Over the range of compositions of natural 
waters, H2CO3, HCO3

− , and CO3
2− may all be 

present. In most cases, however, one of these 
forms will dominate and the concentrations 
of the remaining ones will be an order of 
magnitude or more lower than that of the 
dominant one. In some cases, two of the 
above species may have comparable concen-

trations and we will have to consider equilib-
rium between them, but it is rarely necessary 
to consider equilibrium between all three. 
Thus at most we will have to consider equi-
librium between H2CO3 and HCO3

−, or HCO3
− 

and CO3
2−, and we can safely ignore the exist-

ence of the remaining species. A successful 
solution of problems involving carbonate 
equilibria often requires correctly deciding 
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• The sum of valence numbers assigned to 
atoms in molecules or complex species 
must equal the actual charge on the species.

• The valence number of hydrogen is +1, 
except in metal hydrides, when it is −1.

• The valence number of oxygen is −2 except 
in peroxides, when it is −1.

The valence state in which an element will  
be present in a system is governed by the 
availability of electrons. Oxidation–reduction 
(redox) reactions involve the transfer of elec-
trons and the resultant change in valence. 
Oxidation is the loss of electrons; reduction 
is the gain of electrons.* An example is the 
oxidation of magnetite (which consists of 1 
Fe2+ and 2 Fe3+) to hematite:

 2
1
2

33 4 2 2 3Fe O O Fe O+ !  (3.101)

The Fe2+ in magnetite loses an electron in this 
reaction and thereby oxidized; conversely, 
oxygen gains an electron and is thereby 
reduced.

We can divide the elements into electron 
donors and electron acceptors; this division is 
closely related to electronegativity, as you 
might expect. Electron acceptors are electron-
egative; electron donors are electropositive. 
Metals in 0 valence state are electron donors, 
non-metals in 0 valence state are usually elec-
tron acceptors. Some elements, such as carbon 
and sulfur, can be either electron donors or 
receptors. Oxygen is the most common elec-
tron acceptor, hence the term oxidation. It is 
nevertheless important to remember that oxi-
dation and reduction may take place in the 
absence of oxygen.

A reduced system is one in which the avail-
ability of electrons is high, due to an excess 
of electron donors over electron acceptors. In 
such a system, metals will be in a low valence 
state (e.g., Fe2+). Conversely, when the avail-
ability of electrons is low, due to an abun-
dance of electron acceptors, a system is said 
to be oxidized. Since it is the most common 
electron acceptor, the abundance of oxygen 
usually controls the oxidation state of a 
system, but this need not be the case.

which reactions to ignore. We will discuss 
carbonate equilibrium in greater detail in 
Chapter 6.

3.11 OXIDATION AND REDUCTION

An important geochemical variable that we 
have not yet considered is the oxidation state 
of a system. Many elements exist in nature in 
more than one valence state. Iron and carbon 
are the most important of these because of 
their abundance. Other elements, including 
transition metals such as Ti, Mn, Cr, Ce, Eu, 
and U, and non-metals such as N, S, and As, 
are found in more than one valence state in 
nature. The valence state of an element can 
significantly affect its geochemical behavior. 
For example, U is quite soluble in water in its 
oxidized state, U6+, but is much less soluble in 
its reduced state, U4+. Many uranium deposits 
have formed when an oxidized, U-bearing 
solution was reduced. Iron is reasonably 
soluble in reduced form, Fe2+, but much less 
soluble in oxidized form, Fe3+. The same is 
true of manganese. Thus iron is leached from 
rocks by reduced hydrothermal fluids and 
precipitated when these fluids mix with oxi-
dized seawater. Eu2+ in magmas substitutes 
readily for Ca in plagioclase, whereas Eu3+ 
does not. The mobility of pollutants, particu-
larly toxic metals, will depend strongly on the 
whether the environment is reducing or oxi-
dizing. Thus the oxidation state of a system 
is an important geochemical variable.

The valence number of an element is defined 
as the electrical charge an atom would acquire 
if it formed ions in solution. For strongly elec-
tronegative and electropositive elements that 
form dominantly ionic bonds, valence number 
corresponds to the actual state of the element 
in ionic form. However, for elements that pre-
dominantly or exclusively form covalent 
bonds, valence state is a somewhat hypotheti-
cal concept. Carbon, for example, is never 
present in solution as a monatomic ion. 
Because of this, assignment of valence number 
can be a bit ambiguous. A few simple conven-
tions guide assignment of valence number:

• The valence number of all elements in 
pure form is 0.

* A useful mnemonic to remember this is LEO the lion says GRR! (Loss Equals Oxidation, Gain Refers to 
Reduction.) Silly, perhaps, but effective. Try it!
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exchange of electrons between elements, for 
example, zinc and copper:

 Zn Cu Zn Cus aq aq s+ ++ +2 2!  (3.103)

where the subscript s denotes the solid. Such 
a cell provides a measure of the relative pref-
erence of Zn and Cu for electrons. In practice, 
such measurements are made by applying a 
voltage to the system that is just sufficient to 
halt the flow of electrons from the zinc plate 
to the copper one. What is actually measured 
then is a potential energy, denoted E, and 
referred to as the electrode potential, or simply 
the potential of the reaction.

If we could measure the potential of two 
separate half-cell reactions:

Zn Zn es aq! 2 2+ −+
Cu Cu es aq! 2 2+ −+

we could determine the energy gain/loss in the 
transfer of an electron from an individual 
element. Unfortunately, such measurements 
are not possible (nor would these reactions 
occur in the natural environment: electrons 
are not given up except to another element or 
species*). This requires the establishment of 
an arbitrary reference value. Once such a ref-
erence value is established, the potential 
involved in reactions such as 3.102 can be 
established.

3.11.1.1 Hydrogen scale potential, EH

The established convention is to measure 
potentials in a standard hydrogen electrode 
cell (at standard temperature and pressure). 
The cell consists on one side of a platinum 
plate coated with fine Pt powder that is sur-
rounded by H2 gas maintained at a partial 
pressure of 1 atm and immersed in a solution 
of unit H+ activity. The other side consists of 
the electrode and solution under investiga-
tion. A potential of 0 is assigned to the half-
cell reaction:

 1
2 2H H e( )g aq! + −+  (3.104)

To predict the equilibrium oxidation state 
of a system we need a means of characterizing 
the availability of electrons, and the valence 
state of elements as a function of that avail-
ability. Low-temperature geochemists and high- 
temperature geochemists do this in different 
ways. The former use electrochemical poten-
tial while the latter use oxygen fugacity. We 
will consider both.

3.11.1 Redox in aqueous solutions

The simplest form of the chemical equation 
for the reduction of ferric iron would be:

 Fe e Feaq aq
3 2+ − ++ !  (3.102)

where the subscript aq denotes the aqueous 
species. This form suggests that the energy 
involved might be most conveniently meas-
ured in an electrochemical cell.

The Daniell cell pictured in Figure 3.18 can 
be used to measure the energy involved in the 

Galvanometer

(Anode) (Cathode)

Cu2+

Ion Flow

Porous
Plug

Zn 2+

Zn2+

2+
Zns → Znaq + 2e–2+

Znaq →
2+

← SO4 aq
2–

Zn Cu

aq

SO4
2– SO4

2–

— +

e–

Cuaq + 2e
–  → Cus

Figure 3.18 Electrode reactions in the Daniell 
Cell.

* Ionization reactions, where free electrons are formed (plasmas), do occur in nature at very high temperatures. 
They occur, for example, in stars or other very energetic environments in the universe.
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Table 3.3 EH°  and pε° for some half-cell reactions.

Half-cell reaction EH° (V) pε°

Li+ + e− ! Li −3.05 −51.58
Ca2+ + 2 e− ! Ca −2.93 −49.55
Th4+ + 4e− ! Th −1.83 −30.95
U4+ + 4e− ! U −1.38 −23.34
Mn2+ + 2e− ! Mn −1.18 −19.95
Zn2+ + 2e− ! Zn −0.76 −12.85
Cr3+ + 3e− ! Cr −0.74 −12.51
Fe2+ + 2e− ! Fe −0.44 −7.44
Eu3+ + e− ! Eu2+ −0.36 −6.08
Pb2+ + 2e− ! Pb −0.13 −2.13
CO2(g) + 4H+ + 4e− ! CH2O*+2H2O −0.71 −1.2
Ni2+ + 2e− ! Ni −0.26 −4.34
2H+ + 2e− ! H2(g) 0 0
N2(g) + 6H+ + 6e− ! 2NH3 0.093 1.58
Cu2+ + 2e− ! Cu 0.34 5.75
UO e UO2

2
22+ −+ ! 0.41 6.85

S + 2e− ! S2− 0.44 7.44
Cu+ + e− ! Cu 0.52 8.79
Fe3+ + e− ! Fe2+ 0.77 13.02
NO3+ + 2H+ + e− ! NO2(g) + H2O 0.80 13.53
Ag+ + e− ! Ag 0.80 13.53
Hg2+ + 2e− ! Hg 0.85 14.37
MnO2(s) + 4H+ + 2e− ! Mn2+ + 2H2O 1.22 20.63
O2 + 4H+ + 4e− ! 2H2O 1.23 20.80
MnO4− + 8H+ + 5e− ! Mn2+ + 4H2O 1.51 25.53
Au+ + e− ! Au 1.69 28.58
Ce4+ + e− ! Ce3+ 1.72 29.05
Pt+ + e− ! Pt 2.64 44.64

* CH2O refers to carbohydrate, the basic product of photosynthesis.

where the subscript g denotes the gas phase. 
The potential measured for the entire reaction 
is then assigned to the half-cell reaction of 
interest. Thus for example, the potential of 
the reaction:

Zn H Zn Haq g s
2

2 2+ ++ +( ) !

is −0.763 V. This value is assigned to the 
reaction:

 Zn e Znaq s
2 2+ −+ !  (3.105)

and called the hydrogen scale potential, or EH, 
of this reaction. Thus the EH for the reduction 
of Zn+2 to Zn0 is −0.763 V. The hydrogen 
scale potentials of a few half-cell reactions are 
listed in Table 3.3. The sign convention for 
EH is that the sign of the potential is positive 

when the reaction proceeds from left to right 
(i.e., from reactants to products). Thus if a 
reaction has positive EH, the metal ion will be 
reduced by hydrogen gas to the metal. If a 
reaction has negative EH, the metal will be 
oxidized to the ion and H+ reduced. The 
standard state potentials (298 K, 0.1 MPa) of 
more complex reactions can be predicted by 
algebraic combinations of the reactions and 
potentials in Table 3.3 (see Example 3.11).

The half-cell reactions in Table 3.3 are 
arranged in order of increasing E°. Thus a 
species on the product (right) side of a given 
reaction will reduce (give up electrons to) the 
species on the reactant side in all reactions 
listed below it. Thus in the Daniell Cell reac-
tion in Figure 3.18, Zn metal will reduce Cu2+ 
in solution. Zn may thus be said to be a 
stronger reducing agent than Cu.
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3.11.1.2 Alternative representation of  
redox state: pε

Consider again the reaction:

 Fe e Feaq aq
3 2+ − ++ !  (3.102)

If we were to express the equilibrium constant 
for this reaction, we would write:

 K Fe

Fe e

= +

+ −

a
a a

2

3

Thus we might find it convenient to define an 
activity for the electron. For this reason, 
chemists have defined an analogous parame-
ter to pH, called pε, which is the negative log 
of the activity of electrons in solution:

 p aeε ≡ − −log  (3.111)

The log of the equilibrium constant for eqn. 
3.101 may then be written as:

 log logK Fe

Fe

= ++

+

a
a

p
2

3

ε

Upon rearranging we have:

 p
a
a

ε = − +

+
log logK Fe

Fe

2

3

 (3.112)

When the activities of reactants and products 
are in their standard states (i.e., a = 1), then:

 p
z

oε = 1
logK  (3.113)

(where z again is the number of electrons 
exchanged: 1 in reaction 3.102). pε° values 
are empirically determined and may be found 
in various tables. Table 3.3 lists values for 
some of the more important reactions. For 
any state other than the standard state, pε is 
related to the standard state pε° by:

 p p
a
a

oε ε= − +

+
log Fe

Fe

2

3

 (3.114)

Electrochemical energy is another form of 
free energy and can be related to the Gibbs 
free energy of reaction as:

 ∆ = −G z EF  (3.106)

and

 ∆G° = − °z EF  (3.107)

where z is the number of electrons per mole 
exchanged (e.g., 2 in the reduction of zinc) 
and ѝ is the Faraday constant (ѝ = 96,485 
coulombs; 1 joule = 1 volt-coulomb). The 
free energy of formation of a pure element is 
0 (by convention). Thus, the ΔG in a reaction 
that is opposite one such as 3.105, such as:

Zn Zn es( )
+ −+! 2 2

is the free energy of formation of the ion from 
the pure element. From eqn. 3.106 we can 
calculate the ΔG for the reduction of zinc as 
147.24 kJ/mol. The free energy of formation 
of Zn2+ would be −147.24 kJ/mol. Given the 
free energy of formation of an ion, we can 
also use eqn. 3.105 to calculate the hydrogen 
scale potential. Since

 ∆ = ∆ + ∏G G RT ao
i

i

iln ν  (3.108)

we can substitute eqns. 3.106 and 3.107 into 
3.108 and also write

 E E
RT
z

ai
i

i= ° − ∏F
ln ν  (3.109)

Equation 3.108 is known as the Nernst Equa-
tion.* At 298 K and 0.1 MPa it reduces to:

 E E
z

ao
i

i

i= − ∏0 0592.
log ν  (3.110)

We can deduce the meaning of this relation-
ship from the relationship between ΔG and E 
in eqn. 3.106. At equilibrium ΔG is zero. Thus 
in eqn. 3.108, activities will adjust themselves 
such that E is 0.

* Named for Walther Nernst (1864–1941). Nernst was born in Briesau, Prussia (now in Poland) and completed a 
PhD at the University of Würzburg in 1887. Nernst made many contributions to thermodynamics and kinetics, 
including an early version of the third law. He was awarded the Nobel Prize in 1920.
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pε is a hypothetical unit, defined for conven-
ience of incorporating a representation of 
redox state that fits readily into established 
thermodynamic constructs such as the equi-
librium constant. In this sense, eqn, 3.116 
provides a more accurate definition of pε than 
does eqn. 3.111.

The greater the pε, the greater the tendency 
of species to lose their transferable, or valence, 
electrons. In a qualitative way we can think 
of the negative of pε as a measure of the avail-
ability of electrons. pε can be related in a 
general way to the relative abundance of elec-
tron acceptors. When an electron acceptor, 
such as oxygen, is abundant relative to the 
abundance of electron donors, the pε is high 
and electron donors will be in electron-poor 
valence states (e.g., Mn4+ instead of Mn2+). pε, 
and EH, are particularly useful concepts when 

pε and EH are related by the following 
equation:

 p
E

RT
E

T
H Hε = =F

2 303
5039

.
 (3.116)

(the factor 2.303 arises from the switch from 
natural log units to base 10 log units).

In defining electron activity and represent-
ing it in log units, there is a clear analogy 
between pε and pH. However, the analogy is 
purely mathematical, and not physical. 
Natural waters do not contain significant con-
centrations of free electrons. Also, although a 
system at equilibrium can have only one value 
for pε, just as it will have only one value of 
pH, redox equilibrium is often not achieved 
in natural waters. The pε of a natural system 
is therefore often difficult to determine. Thus 

Example 3.11 Calculating the EH of net reactions

We can calculate EH values for reactions not listed in Table 3.3 by algebraic combinations of the 
reactions and potentials that are listed. There is, however, a “catch”. Let’s see how this works.

Calculate the EH for the reaction:

Fe e Fe3 3+ −+ !

Answer: This reaction is the algebraic sum of two reactions listed in Table 3.3:

Fe e Fe3 2+ − ++ !

Fe e Fe2 2+ −+ !

Since the reactions sum, we might assume that we can simply sum the EH values to obtain the EH 
of the net reaction. Doing so, we obtain an EH of 0.33 V. However, the true EH of this reaction is 
−0.037 V. What have we done wrong?

We have neglected to take into consideration the number of electrons exchanged. In the algebraic 
combination of EH values, we need to multiply the EH for each component reaction by the number 
of electrons exchanged. We then divide the sum of these values by number of electrons exchanged 
in the net reaction to obtain the EH of the net reaction, i.e.,

 E
z

z EH net
net

i Hi

i

( ) = ∑1  (3.115)

where the sum is over the component reactions i. Looking at eqn. 3.106, we can see why this is the 
case. By Hess’s Law, the ΔG of the net reaction must be the simple sum of the component reaction 
ΔGs, but EH values are obtained by multiplying ΔG by z. Equation 3.115 is derived by combining 
eqn. 3.106 and Hess’s Law. Using eqn. 3.115, we obtain the correct EH of −0.037 V.
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tions under which the activities of species pre-
dominating in two adjoining fields are equal. 
However, since the plot is logarithmic, activi-
ties of species decrease rapidly beyond their 
predominance areas.

More generally, a pε–pH diagram is a type 
of activity or predominance diagram, in which 
the region of predominance of a species is 
represented as a function of activities of two 
or more species or ratios of species. We will 
meet variants of such diagrams in later 
chapters.

Let’s now see how Figure 3.19 can be con-
structed from basic chemical and thermody-
namic data. We will consider only a very 
simple Fe-bearing aqueous solution. Thus our 
solution contains only species of iron, the dis-
sociation products of water and species 
formed by reactions between them. Thermo-
dynamics allows us to calculate the predomi-
nance region for each species. To draw 
boundaries on this plot, we will want to 
obtain equations in the form of pε = a + b · 
pH. With an equation in this form, b is a slope 
and a is an intercept on a pε–pH diagram. 
Hence we will want to write all redox reac-
tions so that they contain e− and all acid–base 
reactions so that they contain H+.

In Figure 3.18, we are only interested in the 
region where water is stable. So to begin con-
struction of our diagram, we want to draw 
boundaries outlining the region of stability of 
water. The upper limit is the reduction of 
oxygen to water:

1
2

2 22 2O e H H O( )g aq+ +− + !

The equilibrium constant for this reaction is:

 K H O

O e H

=
− +

a
P a a

2

2
1 2 2 2/  (3.117)

Expressed in log form:

 log log logK H O O= − + +a P p pH2 2

1
2

2 2ε

The value of log K is 41.56 (at 25°C and 
0.1 MPa). In the standard state, the activity of 
water and partial pressure of oxygen are 1 so 
that 3.117 becomes:

 p pHε = −20 78.  (3.118)

combined with pH to produce diagrams rep-
resenting the stability fields of various species. 
We will briefly consider how these are 
constructed.

3.11.1.3 pε–pH diagrams

pε–pH and EH–pH diagrams are commonly 
used tools of aqueous geochemistry, and it is 
important to become familiar with them. An 
example, the pε–pH diagram for iron, is 
shown in Figure 3.19. pε–pH diagrams look 
much like phase diagrams, and indeed there 
are many similarities. There are, however, 
some important differences. First, labeled 
regions do not represent conditions of stabil-
ity for phases; rather they show which species 
will predominate under the pε–pH conditions 
within the regions. Indeed, in Figure 3.19 we 
consider only a single phase: an aqueous solu-
tion. The bounded regions are called predom-
inance areas. Second, species are stable beyond 
their region: boundaries represent the condi-

2
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Figure 3.19 pε–pH diagram showing 
predominance regions for ferric and ferrous 
iron and their hydrolysis products in aqueous 
solution at 25°C and 1 bar. After Nordstrom 
and Munoz (1986). With permission from 
John Wiley & Sons.
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tion is 13.0 (Table 3.3), hence from eqn. 3.112 
we have:

 p
a
a

ε = − +

+
13 0

2

3

. log Fe

Fe

 (3.119)

When the activities are equal, this equation 
reduces to:

 pε = 13 0.

and therefore plots as a horizontal line at 
pε = 13 that intersects the FeOH2+–Fe3+ line 
at an invariant point at pH = 2.2 (line  on 
Figure 3.19).

The equilibrium between Fe2+, and Fe(OH)2+ 
is defined by the reaction:

Fe(OH) e H Fe H Oaq aq
2 2

2
+ − + ++ + +!

Two things are occurring in this reaction: 
reduction of ferric to ferrous iron, and reac-
tion of H+ ions with the OH− radical to form 
water. Thus we can treat it as the algebraic 
sum of the two reactions we just considered:

Fe e Fe paq aq
3 2 13 0+ − ++ =! ε .

Fe(OH) H Fe H O pHaq aq
2 3

2 2 2+ + ++ + =! .

Fe(OH) e H Fe H O p pHaq aq
2 2

2 15 2+ − + ++ + + + =! ε .

or: p pHε = −15 2.

Thus this boundary has a slope of −1 and an 
intercept of 15.2 (line  on Figure 3.19). 
Slopes and intercepts of other reactions may 
be derived in a similar manner.

Now let’s consider some solid phases of 
iron as well, specifically hematite (Fe2O3) and 
magnetite (Fe3O4). First, let’s consider the oxi-
dation of magnetite to hematite. We could 
write this reaction as we did in eqn. 3.101, 
however, that reaction does not explicitly 
involve electrons, so that we would not be 
able to derive an expression containing pε or 
pH from it. Instead, we’ll use water as the 
source of oxygen and write the reaction as:

2 3 2 23 4 2 2 3Fe O H O Fe O H e+ + ++ −!
(3.120)

Assuming unit activity of all phases, the  
equilibrium constant expression for this reac-
tion is:

Equation 3.118 plots on a pε–pH diagram as 
a straight line with a slope of −1 intersecting 
the vertical axis at 20.78. This is labeled as 
line  on Figure 3.19.

Similarly, the lower limit of the stability of 
water is the reduction of hydrogen:

H e Haq g
+ −+ ! 1

2 2( )

Because ∆Gr° = 0 and log K = 0 (by conven-
tion), we have pε = −pH for this reaction: a 
slope of 1 and intercept of 0. This is labeled 
as line  on Figure 3.19. Water is stable 
between these two lines (region shown in gray 
on Figure 3.19).

Now let’s consider the stabilities of a few 
simple aqueous iron species. One of the  
more important reactions is the hydrolysis  
of Fe3+:

Fe H O Fe(OH) Haq aq
3

2
2+ + ++ +!

The equilibrium constant for this reaction is 
0.00631. The equilibrium constant expres-
sion is then:

 log log .( )K Fe OH

Fe

= − = −
+

3+

a

a
pH

2
2 2

Region boundaries on pε–pH diagrams repre-
sent the conditions under which the activities 
of two species are equal. When the activities 
of FeOH+2 and Fe+3 are equal the equation 
reduces to:

 − = =log .K pH 2 2

Thus this equation defines the boundary 
between regions of predominance of Fe3+ and 
Fe(OH)2+. The reaction is independent of pε 
(no oxidation or reduction is involved), and 
it plots as a straight vertical line pH = 2.2 
(line  on Figure 3.19). Boundaries between 
the successive hydrolysis products, such as 

( )Fe OH 3
0 and ( )Fe OH 4

−, can be similarly drawn 
as vertical lines at the pH equal to their equi-
librium constants, and occur at pH values of 
3.5, 7.3, and 8.8. The boundary between Fe2+ 
and Fe(OH)− can be similarly calculated and 
occurs at a pH of 9.5.

Now consider equilibrium between Fe2+ 
and Fe3+ (eqn. 3.102). The pε° for this reac-
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activity of aqueous Fe2+ of 10−6. For any other 
activity, the line will be shifted, as illustrated 
in Figure 3.20. For higher concentrations, the 
magnetite region will expand, while for lower 
concentrations it will contract.

Now consider the equilibrium between 
hematite and Fe2+. We can describe this with 
the reaction:

Fe O H e Fe H O2 3
2

26 2 2 3+ + ++ − +!

The equilibrium constant (which may again 
be calculated from ΔGr) for this reaction is 
23.79.

Expressed in log form:

 log log .K Fe= + + =+2 6 2 23 792a pH pε

Using an activity of 1 for Fe2+, we can solve 
for pε as:

 p pH aε = − − +11 9 3 2. log Fe

 logK pH= − −2 2pε  (3.121)

From the free energy of formation of the 
phases (ΔGf = −742.2 kJ/mol for hematite, 
−1015.4 kJ/mol for magnetite, and −237.2 
kJ/mol for water), we can calculate ΔGr using 
Hess’s Law and the equilibrium constant 
using eqn. 3.86. Doing so, we find log 
K = −5.77. Rearranging eqn. 3.121 we have:

 pε = −2 88. pH

The boundary between hematite and magnet-
ite will plot as a line with a slope of −1 and 
an intercept of 2.88. Above this line (i.e., at 
higher pε) hematite will be stable; below that 
magnetite will be stable (Figure 3.20). Thus 
this line is equivalent to a phase boundary.

Next let’s consider the dissolution of mag-
netite to form Fe2+ ions. The relevant reaction 
is:

Fe O H e Fe H O3 4
2

28 2 3 4+ + ++ − +!

The equilibrium constant for this reaction is 
7 × 1029. Written in log form:

 log log .K Fe= + − =+3 8 2 29 852a pH pε

or:

 p pH aε = − − +14 92 4
3
2

2. log Fe

We have assumed that the activity of water is 
1 and that magnetite is pure and therefore 
that its activity is 1. If we again assume unit 
activity of Fe2+, the predominance area of 
magnetite would plot as the line:

 p pHε = −14 92 4.

that is, a slope of −4 and intercept of 0.58. 
However, such a high activity of Fe2+ would 
be highly unusual in a natural solution. A 
more relevant activity for Fe2+ would be 
perhaps 10−6. Adopting this value for the 
activity of Fe2+, we can draw a line corre-
sponding to the equation:

 p pHε = −23 92 4.

This line represents the conditions under 
which magnetite is in equilibrium with an 
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Figure 3.20 Stability regions for magnetite 
and hematite in equilibrium with an iron-
bearing aqueous solution. Red lines are for a 
Feaq activity of 10−6, black lines for activities 
of 10−4 and 10−8. The latter is dashed.
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For an activity of Fe2+ of 10−6, this is a 
line with a slope of 3 and an intercept of  
17.9. This line represents the conditions  
under which hematite is in equilibrium  
with aFe2 10 6

+ = − . Again, for any other activity, 
the line will be shifted as shown in Figure 
3.20.

Finally, equilibrium between hematite and 
Fe3+ may be expressed as:

Fe O H Fe H O2 3
3

26 2 3+ ++ +!

The equilibrium constant expression is:

 log log .K Fe= + = −+2 6 3 933a pH

For a Fe3+ activity of 10−6, this reduces to:

 pH = 1 34.

Since the reaction does not involve transfer  
of electrons, this boundary depends only  
on pH.

The boundary between predominance of 
Fe3+ and Fe2+ is independent of the Fe concen-
tration in solution, and is the same as eqn. 
3.119 and Figure 3.18, namely pε = 13.

Examining this diagram, we see that for 
realistic dissolved Fe concentrations, magnet-
ite can be in equilibrium only with a fairly 
reduced, neutral to alkaline solution. At pH 
of about 7 or less, it dissolves and would not 
be stable in equilibrium with acidic waters 
unless the Fe concentration were very high. 
Hematite is stable over a larger range of con-
ditions, and becomes stable over a wider 
range of pH as pε increases. Significant con-
centrations of the Fe3+ ion (>10−6 m) will 
be found only in very acidic, oxidizing 
environments.

Figure 3.21 illustrates the pH and pε 
values that characterize a variety of environ-
ments on and near the surface of the Earth. 
Comparing this figure with pH–pε diagrams 
allows us to predict the species we might 
expect to find in various environments. For 
example, Fe3+ would be a significant dis-
solved species only in the acidic, oxidized 
waters that sometimes occur in mine drain-
ages (the acidity of these waters results from 
high concentrations of sulfuric acid that is 
produced by oxidation of sulfides). We would 
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Figure 3.21 pε and pH of various waters on 
and near the surface of the Earth. From 
Garrels and Christ (1965).

expect to find magnetite precipitating only 
from reduced seawater or in organic-rich, 
highly saline waters.

3.11.2 Redox in magmatic systems

High-temperature geochemists use oxygen 
fugacity; to characterize the oxidation state of 
systems. Consequently, we want to write 
redox reactions that contain O2. Thus, equi-
librium between magnetite and hematite 
would be written as:

 4 63 4 2 2 3Fe O O Fe Og+ ( ) !  (3.122)

(or alternatively, as we wrote in eqn. 3.101) 
rather than the way we expressed it in eqn. 
3.120. We note, however, there is negligible 
molecular oxygen in magmatic systems, and 
other species are often responsible for transfer 
of electrons and O2−. For example, the equi-
librium between magnetite and hematite may 
be mediated by water:



SOLUTIONS AND THERMODYNAMICS OF MULTICOMPONENT SYSTEMS 109

2 33 4 2 2 3 2Fe O H O Fe O Hg+ +( ) !  (3.123)

The above two reactions are thermody-
namically equivalent in terms of magnetite 
oxidation. The first reaction is simpler, of 
course, and hence preferred, but it may some-
times be necessary to consider the proportions 
of the actual gas species present.

If we can regard magnetite and hematite as 
pure phases, then their activities are equal to 
one and the equilibrium constant for reaction 
3.121 is the inverse of the oxygen fugacity:

 K
O

MH =
ƒ
1

2

 (3.124)

We can rewrite eqn. 3.86 as:

 K = −∆
e

G RTf
o

 (3.125)

and taking the standard state as 1000 K and 
1 bar, we can write:

 
− =

= ∆ − ∆


log log

.
( , ) ( , )

K O

Fe O Fe O

f

G G
RT

f
o

f
o

2

2 3 3 46 4
2 303
1000 1000 



Thus oxygen fugacity can be calculated 
directly from the difference in the free energy 
of formation of magnetite and hematite at the 
appropriate T and P. Substituting appropriate 
values into this equation yields a value for log 
fO2 of −10.86.

It is important to understand that the 
oxygen fugacity is fixed at this level (though 
the exact level at which it is fixed is still dis-
puted because of uncertainties in the thermo-
dynamic data) simply by the equilibrium 
coexistence of magnetite and hematite. The 

Balancing redox reactions for pε–pH diagrams

While many redox reactions are straightforward, balancing more complex redox reactions for pε–pH 
diagrams can be a bit more difficult, but a few simple rules make it easier. Let’s take as an example 
the oxidation of ammonium to nitrate. We begin by writing the species of interest on each side of 
the reaction:

NH NO4 3
+ −=

The next step is to balance the oxygen. We don’t want to use O2 gas to do this. We used O2 at a 
partial pressure of 1 to define the top boundary for the water stability region. Within the region of 
stability of water, the O2 concentration will be lower and we don’t necessarily know its value. This 
is usually best done using water:

3 2 4 3H O NH NO+ =+ −

Next balance the hydrogen using H+:

3 102 4 3H O NH NO H+ = ++ − +

Finally, we use electrons to balance charge:

3 10 82 4H O NH NO H e3+ = + ++ − + −

As a check, we can consider the valance change of our principal species and be sure that our reac-
tion makes sense. In ammonium, nitrogen is in the 3− state, while in nitrate it is in the 5+ state, a 
net change of 8. This is just the number of electrons exchanged in the reaction we have written.



110 GEOCHEMISTRY

oxygen fugacity does not depend on the pro-
portion of these minerals. For this reason, it 
is appropriately called a buffer. To understand 
how this works, imagine some amount of 
magnetite, hematite and oxygen present in a 
magma. If the oxygen fugacity is increased by 
the addition of oxygen to the system, equilib-
rium in the reaction in eqn. 3.121 is driven to 
the right until the log of the oxygen fugacity 
returns to a value of −10.86. Only when all 
magnetite is converted to hematite can the 
oxygen fugacity rise. A drop in oxygen fugac-
ity would be buffered in exactly the opposite 
way until all hematite were gone. A number 
of other buffers can be constructed based on 
reactions such as:

3 2 32 4 2 3 4 2Fe SiO O Fe O SiO
fayalite magnetite quartz

+ +!
( ) ( ) ( )

and

Fe O FeO

iron w stite

+

( ) ( )

1
2 2 !

ü

These can be used to construct the oxygen 
buffer curves in Figure 3.22.

Figure 3.22 Oxygen buffer curves in the system 
Fe-Si-O at 1 bar. QIF, IW, WM, FMQ, and MH 
refer to the quartz–iron–fayalite, iron–wüstite, 
wüstite–magnetite, fayalite–magnetite–quartz 
and magnetite–hematite buffers respectively. 
After Nordstrom and Munoz (1986). With 
permission from John Wiley & Sons.
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