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Example 2.5 Enthalpies (or heats) of reaction and Hess’s Law

What is the energy consumed or evolved in the hydration of corundum (Al2O3) to form gibbsite 
(Al(OH)3)? The reaction is:

1
2

3
22 3 2 3Al O H O Al OH+ → ( )

Answer: We use Hess’s Law. To use Hess’s Law we need the standard state enthalpies for water, 
corundum, and gibbsite. These are: Al2O3: −1675.70 kJ/mol, H2O: −285.83 and Al(OH)3: −1293.13. 
The enthalpy of reaction is ΔHr = −1293.13 − (0.5 × −1675.70) − (1.5 × −285.83) = −26.53 kJ.

This is the enthalpy of reaction at 1 bar and 298 K. Suppose you were interested in this reaction 
under metamorphic conditions such as 300°C and 50 MPa. How would you calculate the enthalpy 
of reaction then?

it is not possible to measure the enthalpy for 
every compound. However, the enthalpies of 
formation for these compounds can generally 
be calculated indirectly.

2.10.3 Entropies of reaction

Since

 dH dQp=  (2.62)

and

 dS
dQ
Trev =  (2.57)

then at constant pressure:

 dS
dH
T

rev =  (2.116)

Thus at constant pressure, the entropy change 
in a reversible reaction is simply the ratio of 
enthalpy change to temperature.

Entropies are additive properties and entro-
pies of reaction can be calculated in the same 
manner as for enthalpies, so Hess’s Law 
applies:

 ∆ ∆S v Sr i f i
i

= ∑ ,
0

 (2.117)

The total entropy of a substance can be cal-
culated as:

S
C dT

T
S SP

298
0

298

0= + + ∆∫ φ  (2.118)

where S0 is the entropy at 0 K (configura-
tional, or “third law” entropy) and ΔSΦ is the 
entropy change associated with any phase 
change. Compilations for S298 are available 
for many minerals. Table 2.2 lists some heat 
capacity constants for the power series 
formula as well as other thermodynamic data 
for a few geologically important minerals. 
Example 2.6 illustrates how entropy and 
enthalpy changes are calculated.

2.11 FREE ENERGY

We can now introduce two free energy func-
tions, Helmholtz free energy and Gibbs free 
energy. Gibbs free energy is one of the most 
useful functions in thermodynamics.

2.11.1 Helmholtz free energy

We can rearrange eqn. 2.58 to read dU − 
TdS = −PdV. The −PdV term is the work term 
and the TdS term is the heat function. TdS is 
the energy unavailable for work. Therefore 
dU − TdS is the amount of internal energy 
available for work, or the free energy. We 
define it as A, the Helmholtz free energy:

 A U TS≡ −  (2.119)

As usual, we are interested in the differential 
form (since we are more interested in changes 
than in absolutes):

dA dU d TS dU SdT TdS= − = − −( )  (2.120)
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Example 2.6 Calculating enthalpy and entropy changes

If the heat capacity of steam can be represented by a three-term power series:

C a bT cTp = + + 2

with constants a = 36.37 J/K-mol, b = −7.84 × 10−3 J/K2-mol, and c = 9.08 × 10−6 J/K3-mol, and the 
enthalpy of vaporization at 100°C is 40.6 kJ/mol, calculate the S and H changes when 1 mol of liquid 
water at 100°C and 1 atm is converted to steam and brought to 200°C and 3 atm. Assume that 
with respect to volume, steam behaves as an ideal gas (which, in reality, it is certainly not).

Answer: We need to calculate entropy and enthalpy associated with three changes: the conversion 
of water to steam, raising the steam from 100°C to 200°C, and increasing the pressure from 1 atm 
to 3 atm. Since both S and H are state variables, we can treat these three processes separately; our 
answer will be the sum of the result for each of these processes and will be independent of the order 
in which we do these calculations.

1. Conversion of water to steam. This process will result in ΔH of 40.6 kJ. For entropy, ΔS = 
ΔH/T = 40.6/373 = 109 J/K. We converted centigrade to Kelvin, or absolute, temperature.

2. Raising the steam from 100°C to 200°C (from 373 K to 473 K) isobarically. Since heat capacity 
is a function of temperature, we will have to integrate eqn. 2.81 over the temperature 
interval:

C dT a bT cT dT a dT b TdT c T dTP
T

T

1

2
2

373

473

373

473

373

473
2∫ ∫ ∫ ∫= + +( ) = + +

3373

473
2 3

373

473

2 3∫ = + +





aT
b

T
c

T

Evaluating this, we find that ΔH = (17.20 − 0.88 + 0.32) − (13.57 − 0.55 + 0.16) = 3.469 kJ. 
The entropy change is given by:

∆S
C
T

dT
a
T

dT bdT cTdT a T bT
cP

T

T

= = + + = + +∫ ∫ ∫ ∫
1

2

373

473

373

473

373

473
ln

22
2

373

473

T





Evaluating this, we find that ΔS = (224.01 − 3.71 + 1.02) − (215.37 − 2.93 + 0.63) = 8.24 J/K.
3. Increasing pressure from 1 atm to 3 atm (0.1 MPa to 0.3 MPa) isothermally. We can use eqn. 

2.117 to determine the enthalpy change associated with the pressure change. On the assumption 
of ideal gas behavior, we can substitute 1/T for α. Doing so, we find the equation goes to 0; 
thus there is no enthalpy change associated with a pressure change for an ideal gas. This is in 
accord with assumptions about an ideal gas: namely, that there are no forces between molecules, 
hence no energy is stored as potential energy of attraction between molecules.

The isothermal pressure dependence of entropy is given by eqn. 2.106. We substitute 1/T for 
α and RT/P for V and integrate from P1 to P2:

∆S
T

RT
P

dP
R
P

dP R P
P

P

P

P

= − = − = − [ ] = − 
∫ ∫1

8 315
0 3
0 11

2

1

2

0 1
0 3ln . ln

.

..
.





= −J/K  J/K9 13.

The whole enthalpy and entropy changes are the sum of the changes in these three steps:

∆ ∆H S= + + = = + − =40 6 3 5 0 44 1 0 0. . . . . . .kJ 1 8 8 8 2 9 1 1 7 9 J/K
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or substituting eqn. 2.58 into 2.120:

 dA SdT PdV= − −  (2.121)

2.11.2 Gibbs free energy

2.11.2.1 Derivation

The Gibbs free energy is perhaps misnamed. 
By analogy to the Helmholtz free energy, it 
should be called the free enthalpy (but 
enthalpy is an energy), because it is derived as 
follows:

 G H TS≡ −  (2.122)

and

dG d H TS dH d TS= − = −( ) ( )  (2.123)

or

 
dG TdS VdP d TS

TdS VdP SdT TdS
= + −
= + − −

( )

which reduces to:

 dG VdP SdT= −  (2.124)

Notice the similarity to the Helmholtz free 
energy; in that case we subtracted the TS term 
from the internal energy; in this case we sub-
tracted the TS term from the enthalpy. The 
Gibbs free energy is the energy available for 
non-PV work (such as chemical work). It has 
two other important properties: its independ-
ent variables are T and P, generally the ones 
in which we are most interested in geochem-
istry, and it contains the entropy term (as does 
the Helmholtz free energy), and hence can be 
used as an indication of the direction in which 
spontaneous reactions will occur.

2.11.2.2 Gibbs free energy change in reactions

For a finite change at constant temperature, 
the Gibbs free energy change is:

 D D DG H T S= −  (2.125)

The free energy change of formation, ΔGf, is 
related to the enthalpy and entropy change of 
reaction:

 ∆ ∆ ∆G H T Sf f f
0 0 0= −  (2.126)

Like other properties of state, the Gibbs free 
energy is additive. Therefore:

 ∆ ∆G v Gr i f i

i

= ∑ ,  (2.127)

In other words, we can use Hess’s Law to 
calculate the free energy change of reaction. 
Values for ΔGf at the standard state are avail-
able in compilations.

2.11.3 Criteria for equilibrium and spontaneity

The Gibbs free energy is perhaps the single 
most important thermodynamic variable in 
geochemistry because it provides this criterion 
for recognizing equilibrium. This criterion is:

Products and reactants are in equilibrium 
when their Gibbs free energies are equal.

At fixed temperature and pressure, a chemi-
cal reaction will proceed in the direction of 
lower Gibbs free energy (i.e., ΔGr < 0).

Another important quality of the Gibbs free 
energy is closely related:

The reverse is also true: a reaction will not 
proceed if it produces an increase in the Gibbs 
free energy.

On an intuitive level, we can understand 
the Gibbs free energy as follows. We know 
that transformations tend to go in the direc-
tion of the lowest energy state (e.g., a ball 
rolls down hill). We have also learned  
that transformations go in the direction of 
increased entropy (if you drop a glass it 
breaks into pieces; if you drop the pieces they 
don’t re-assemble into a glass). We must  
consider both the tendency for energy to 
decrease and the tendency for entropy to 
increase in order to predict the direction of 
a chemical reaction. This is what the Gibbs 
free energy does. Example 2.7 illustrates  
how Gibbs free energy of reaction is used to 
predict an equilibrium.
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∆ ∆ ∆ ∆G G V dP S dTT P T P r
P

P

r
T

T

ref ref
ref ref

′ ′

′ ′
= + −∫ ∫, ,  

(2.130)

(See Example 2.8.) For liquids and particu-
larly gases, the effects of pressure and tem-
perature on ΔV are significant and cannot be 
ignored. The reference pressure is generally 
0.1 MPa. For solids, however, we can often 
ignore the effects of temperature and pressure 
on ΔV so the first integral reduces to: 
ΔV(P´−Pref) (see Example 2.9). On the other 
hand, we cannot ignore the temperature 
dependence of entropy. Hence we need to 
express ΔSr as a function of temperature. The 
temperature dependence of entropy is given 
by eqn. 2.105. Writing this in integral form, 
we have:

 ∆
∆

S T
C
T

dTp

T

T

ref

( ) = ∫
This is the change in entropy due to increasing 
the temperature from the reference state to T. 

2.11.4 Temperature and pressure dependence 
of the Gibbs free energy

One reason why the Gibbs free energy is 
useful is that its characteristic variables are 
temperature and pressure, which are the 
“external” variables of greatest interest in 
geochemistry. Since it is a state variable, we 
can deduce its temperature and pressure 
dependencies from eqn. 2.124, which are:

∂
∂
∆ ∆G
P

V
T





 =  (2.128)

 
∂
∂
∆ ∆G
T

S
P





 = −  (2.129)

Equations 2.128 and 2.129 allow us to predict 
how the Gibbs free energy of reaction will 
change with changing temperature and pres-
sure. Thus we can predict how the direction 
of a reaction will change if we change tem-
perature and pressure. To obtain the ΔGr at 
some temperature T´ and pressure P´, we 
integrate:

Example 2.7 Using Gibbs free energy to predict equilibrium

Using the thermodynamic data given in Table 2.2, calculate ΔGr for the reaction:

CaAl Si O Mg SiO CaMgSi O MgAl O MgSiO2 2 8 2 4 2 6 2 4 32 2+ + +!

( )Anorthite  Forsterite Diopside Spinel Enstatite+ + +2 2!

at 298 K and 0.1 MPa. Which mineral assemblage is more stable under these conditions (i.e., which 
side of the reaction is favored)? Which assemblage will be favored by increasing pressure? Why? 
Which side will be favored by increasing temperature? Why?

Answer: We can calculateΔGr from ΔHf and ΔSf, values listed in Table 2.2:

∆ ∆ ∆G H T S= −

ΔH is calculated as: ΔHf,Di + ΔHf,Sp + 2 × ΔHf,En − (ΔHf,An + 2 × ΔHf,Fo). ΔS is calculated in a similar 
manner. Our result is −6.08 kJ/mol. Because ΔGr is negative, the reaction will proceed to the right, 
so that the assemblage on the right is more stable under the conditions of 298 K and 1 atm.

To find out which side will be favored by increasing pressure and temperature, we use equations 
2.128 and 2.129 to see how ΔG will change. For temperature, ∂ΔG/∂T = −ΔS. ΔSr is −36.37 /K-mol, 
and ∂ΔG/∂T = 36.37. The result is positive, so that ΔG will increase with increasing T, favoring the 
left side. Had we carried out the calculation at 1000°C and 0.1 MPa, a temperature appropriate for 
crystallization from magma, we would have found that the anorthite–forsterite assemblage is stable. 
For pressure, ∂ΔG/∂P = ΔV. ΔV for the reaction is −20.01 cc/mol (=J/MPa-mol), so will decrease with 
increasing pressure, favoring the right side. Reassuringly, our thermodynamic result is consistent 
with geologic observation. The assemblage on the left, which could be called “plagioclase peridotite”, 
transforms to the assemblage on the right, “spinel peridotite”, as pressure increases in the mantle.
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Example 2.8 Predicting the equilibrium pressure of a mineral assemblage

Using the thermodynamic reaction and data as in Example 2.7:

CaAl Si O Mg SiO CaMgSi O MgAl O MgSiO2 2 8 2 4 2 6 2 4 32 2+ + +!

( )Anorthite Forsterite Diopside Spinel Enstatite+ + +! 2

determine the pressure at which these two assemblages will be in equilibrium at 1000°C. Assume 
that the volume change of the reaction is independent of pressure and temperature (i.e., α and β = 0).

Answer: These two assemblages will be in equilibrium if and only if the Gibbs free energy of 
reaction is 0. Mathematically, our problem is to solve eqn. 2.130 for P such that ΔG1273,P = 0.

Our first step is to find ΔGr for this reaction at 1000°C (1273 K) using eqn. 2.132. Heat capacity 
data in Table 2.2 is in the form: Cp = a + bT − cT−2. Substituting for ΔCp, we have:

 ∆ = −∆ ′ − − ∆ + ∆ − ∆



∫∫

′
G S T T

a
T

b
c

T
dTdTT T ref

T

T

T

T

ref
refref

( )
3

 (2.133)

Performing the double integral and collecting terms, substituting ΔT for T´ − Tref, this simplifies to:

 ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆G T S a
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T
c T

T T
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T
T

T T
ref ref

ref′ = − − + −
′


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


 − ′ ′

2 2 2
ln  (2.134)

Equation 2.134 is a general solution to eqn. 2.132 when the Maier-Kelley heat capacity is used.
We found ΔSTref to be −36.37 J/K-mol in Example 2.7. Computing Δa as (aDi + aSp + 2aEn) − (aAn 

+ 2aFo), we find Δa = 15.96 J/mol. Computing Δb and Δc similarly, they are −0.01732 J/K-mol and 
1.66 × 106 J-K2/mol respectively. Substituting values into eqn. 2.136, we find ΔGT = 36.74 kJ/mol.

Since we may assume the phases are incompressible, the solution to the pressure integral is:

 ∆ ∆ ∆G V dP V P PP r
P

P

r ref
ref

= = ′ −
′

∫ ( )  (2.135)

Equation 2.130 may now be written as:

 ∆ ∆ ∆ ∆G G G V P PT P T r ref′ ′ = = ° + + ′ −, ( )0

Let ΔG1273,0.1 = ΔG° + ΔGT. ΔG° is −6.95 kJ/mol (calculated from values in Table 2.2), so 
ΔG1273,0.1 = 29.86 kJ/mol. ΔG1273,0.1 is positive, meaning that the left side of the reaction is favored 
at 1000°C and atmospheric pressure, consistent with our prediction based on ∂G/∂T.

Solving for pressure, we have

 ′ =
−

+′
P

G

V
P

T P

r
ref

ref∆
∆

 (2.136)

With ΔV = −20.01 cc/mol, we obtain a value of 1.49 GPa (14.9 kbar). Thus assemblages on the right 
and left will be in equilibrium at 1.49 GPa and 1000°C. Below that pressure, the left is stable, and 
above that pressure, the right side is the stable assemblage, according to our calculation.

The full change in entropy of reaction is then 
this plus the entropy change at the reference 
temperature:

 ∆ ∆
∆

S S
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Substituting this into 2.130, the second inte-
gral becomes:
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(2.132)

ΔGT´ as we define it here, is the change in free 
energy of reaction as a result of increasing 
temperature from the reference state to T´.
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The transformation from “plagioclase peridotite” to “spinel peridotite” actually occurs around 
1.0 GPa in the mantle. The difference between our result and the real world primarily reflects dif-
ferences in mineral composition: mantle forsterite, enstatite and diopside are solid solutions contain-
ing Fe and other elements. The difference does not reflect our assumption that the volume change 
is independent of pressure. When available data for pressure and temperature dependence of the 
volume change are included in the solution, the pressure obtained is only marginally different: 
1.54 GPa.

Example 2.9 Volume and free energy changes for finite compressibility

The compressibility (β) of forsterite (Mg2SiO4) is 8.33 × 10−6 MPa−1. Using this and the data given 
in Table 2.2, what is the change in molar volume and Gibbs free energy of forsterite at 100 MPa 
and 298 K?

Answer: Let’s deal with volume first. We want to know how the molar volume (43.79 cc/mol) 
changes as the pressure increases from the reference value (0.1 MPa) to 1 GPa. The compressibility 
is defined as:

 β = − ∂
∂







1
V

V
P T

 (2.12)

So the change in volume for an incremental increase in pressure is given by:

 dV V dP= − β  (2.137)

To find the change in volume over a finite pressure interval, we rearrange and integrate:
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Performing the integral, we have:

 ln ( )
V
V

P P
o

o= − −β  (2.138)

where P is the pressure interval, P´ − Po. This may be rewritten as:

 V V eo P Po= − −β( )  (2.139)

However, the value of βΔP is of the order of 10−2, and in this case, the approximation ex ≈ x +1 
holds, so that eqn. 2.139 may be written as:

 V V P Po o≅ − −( ( ))1 β  (2.140)

Equation 2.140 is a general expression that expresses volume as a function of pressure when β is 
known, small, and is independent of temperature and pressure. Furthermore, in situations where 
P>>Po, this can be simplified to:

 V V Po≅ −( )1 β  (2.141)

Using equation 2.141, we calculate a molar volume of 43.54 cc/mol (identical to the value obtained 
using eqn. 2.139). The volume change, ΔV, is 0.04 cc/mol.

The change in free energy with volume is given by:
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(Continued)
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And since the cross-differentials are equal, it 
follows that:
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The other Maxwell Relations can be derived 
in an exactly analogous way from other state 
functions. They are:

from dH (eqn. 2.65)
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from dA (eqn. 2.121)
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from dG (eqn. 2.122)

 
∂
∂

∂
∂

V
T

S
PP T





 = − 



  (2.148)

2.12 THE MAXWELL RELATIONS

The reciprocity relationship, which we dis-
cussed earlier, leads to a number of useful 
relationships. These relationships are known 
as the Maxwell Relations.* Consider the 
equation:

 dU TdS PdV= −  (2.58)

If we write the partial differential of U in 
terms of S and V we have:
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From a comparison of these two equations, 
we see that:

∂
∂

∂
∂

U
S

T
U
V

P
V S





 = 



 = −and  (2.144)
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so that the free energy change as a consequence of a finite change is pressure can be obtained by 
integrating:

 ∆ = ∫G VdP
P

P

o

Into this we may substitute eqn. 2.141:

 ∆ = − = −[ ]
′

∫G V P dP V P Po

V

V
o

P

P

o
o( )1 2β β  (2.142)

Using eqn. 2.142 we calculate a value of ΔG of 4.37 kJ/mol.
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PROBLEMS

1. For a pure olivine mantle, calculate the adiabatic temperature gradient (∂T/∂P)s at 0.1 MPa 
(1 atm) and 1000°C. Use the thermodynamic data in Table 2.2 for forsterite (Mg-olivine, 
Mg2SiO4), and α = 44 × 10−6 K−1, and β = 8 × 10−6 MPa−1.
Note that: 1 cc/mol = 1 J/MPa/mol.

2. Complete the proof that V is a state variable by showing that for an ideal gas:

∂α
∂

∂β
∂

V
P

V
T

= −

3. A quartz crystal has a volume of 7.5 ml at 298 K and 0.1 MPa. What is the volume of the 
crystal at 840 K and 12.3 MPa if:

(a) α = 1.4654 × 10−5 K−1 and β = 2.276 × 10−11 Pa−1, and α and β are independent of T 
and P.

(b) α = 1.4310 × 10−5 K−1 + 1.1587 × 10−9 K−2T
β = 1.8553 × 10−11 Pa−1 + 7.9453 × 10−8 P−1

4. One mole of an ideal gas is allowed to expand against a piston at constant temperature of 
0°C. The initial pressure is 1 MPa and the final pressure is 0.04 MPa. Assuming the reaction 
is reversible,

(a) What is the work done by the gas during the expansion?
(b) What is the change in the internal energy and enthalpy of the gas?
(c) How much heat is gained/lost during the expansion?

5. A typical eruption temperature of basaltic lava is about 1200°C. Assuming that basaltic 
magma travels from its source region in the mantle quickly enough so that negligible heat 
is lost to wall rocks, calculate the temperature of the magma at a depth of 40 km. The density 
of basaltic magma at 1200°C is 2610 kg/m3; the coefficient of thermal expansion is about 
10−4 /K. Assume a heat capacity of 850 J/kg-K and that pressure is related to depth as 
1 km = 33 MPa (surface pressure is 0.1 MPa.).
(HINT: “negligible heat loss” means the system may be treated as adiabatic.)

6. Show that the CP of an ideal monatomic gas is 5/2 R.

7. Show that: 
∂
∂

α
β

P
T V





 =

8. Show that for a reversible process: 
∂
∂


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
 = −U

V
T P

T

α
β

 (2.73)

(Hint: begin with the statement of the first law (eqn. 2.58), make use of the Maxwell relations, 
and your proof in problem 7.)

9. Imagine that there are 30 units of energy to distribute among three copper blocks.

(a) If the energy is distributed completely randomly, what is the probability of the first 
block having all the energy?
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Swalin, R.A. 1962. Thermodynamics of Solids. New York, John Wiley and Sons, Ltd.
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(b) If n1 is the number of units of energy of the first block, construct a graph (a histogram) 
showing the probability of a given value of n1 occurring as a function of n1.

(HINT: use eqn. 2.37, but modify it for the case where there are three blocks.)

10. Consider a box partitioned into equal volumes, with the left half containing 1 mole of Ne 
and the right half containing 1 mole of He. When the partition is removed, the gases mix. 
Show, using a classical thermodynamic approach (i.e., macroscopic) that the entropy change 
of this process is ΔS = 2R ln 2. Assume that He and Ne are ideal gases and that temperature 
is constant.

11. Find expressions for CP and CV for a van der Waals gas.

12. Show that β (the compressibility, defined in eqn. 2.12) of an ideal gas is equal to 1/P.

13. Show that S
U
T

R Q= + ln

Hint: Start with equations 2.47 and 2.36a using the approximation that ln N! = N ln N − N.

14. Show that ∆H V T dP
P

P

= −∫ ( )1
1

2

α

Hint: Begin with eqn. 2.63 and express dU as a function of temperature and volume change.

15. Helium at 298 K and 1 atm has S° = 30.13 cal/K-mol. Assume He is an ideal gas.

(a) Calculate V, H, G, α, ß, CP, CV, for He at 298 K and 1 atm.
(b) What are the values for these functions at 600 K and 100 atm?
(c) What is the entropy at 600 K and 100 atm?

16. Using the enthalpies of formation given in Table 2.2, find ΔH in joules for the reaction:

Mg SiO SiO MgSiO2 4 2 32+ !

17. Using the data in Table 2.2, calculate the enthalpy and entropy change of diopside as it is 
heated at constant pressure from 600 K to 1000 K.

18. Calculate the total enthalpy upon heating of 100 g of quartz from 25°C to 900°C. Quartz 
undergoes a phase transition from α-quartz to β-quartz at 575°C. The enthalpy of this phase 
transition is ΔHtr = 0.411 kJ/mol. Use the Maier-Kelly heat capacity data in Table 2.2.

19. Calcite and aragonite are two forms of CaCO3 that differ only their crystal lattice structure. 
The reaction between them is thus simply:

Calcite Aragonite!

Using the data in Table 2.2:

(a) Determine which of these forms is stable at the surface of the Earth (25°C and 0.1 MPa).
(b) Which form is favored by increasing temperature?
(c) Which form is favored by increasing pressure?

20. Use the data in Table 2.2 to determine the pressure at which calcite and aragonite are in 
equilibrium at 300°C.

21. Suppose you found kyanite and andalusite coexisting in the same rock, which you had 
reason to believe was an equilibrium assemblage, and that you could independently deter-
mine the temperature of equilibrium to be 400°C. Use the data in Table 2.2 to determine 
the pressure at which this rock equilibrated.



Chapter 3

Solutions and thermodynamics of 
multicomponent systems

3.1 INTRODUCTION

In the previous chapter, we introduced ther-
modynamic tools that allow us to predict the 
equilibrium mineral assemblage under a given 
set of conditions. For example, having speci-
fied temperature, we were able to determine 
the pressure at which the assemblage anorth-
ite + forsterite is in equilibrium with the 
assemblage diopside + spinel + enstatite. In 
that reaction the minerals had unique and 
invariant compositions. In the Earth, things 
are not quite so simple: these minerals are 
present as solid solutions,* with substitutions 
of Fe2+ for Mg, Na for Ca, and Cr and Fe3+ 
for Al, among others. Indeed, most natural 
substances are solutions; that is, their compo-
sitions vary. Water, which is certainly the most 
interesting substance at the surface of the 
Earth and perhaps the most important, inevi-
tably has a variety of substances dissolved in 
it. These dissolved substances are themselves 
often of primary geochemical interest. More 
to the point, they affect the chemical behavior 
of water. For example, the freezing tempera-
ture of an aqueous NaCl solution is lower 
than that of pure water. You may have taken 
advantage of this phenomenon by spreading 
salt to de-ice sidewalks and roads.

In a similar way, the equilibrium tempera-
ture and pressure of the plagioclase + 
olivine ! clinopyroxene + spinel + orthopy-
roxene reaction depends on the composition 

of these minerals. To deal with this composi-
tional dependence, we need to develop some 
additional thermodynamic tools, which is the 
objective of this chapter. This may seem bur-
densome at first: if it were not for the variable 
composition of substances, we would already 
know most of the thermodynamics we need. 
However, as we will see in Chapter 4, we can 
use this compositional dependence to advan-
tage in reconstructing conditions under which 
a mineral assemblage or a hydrothermal fluid 
formed.

A final “difficulty” is that the valance state 
of many elements can vary. Iron, for example, 
may change from its Fe2+ state to Fe3+ when 
an igneous rock weathers. The two forms of 
iron have very different chemical properties; 
for example Fe2+ is considerably more soluble 
in water than is Fe3+. Another example of this 
kind of reaction is photosynthesis, the process 
by which CO2 is converted to organic carbon. 
These kinds of reactions are called “oxidation–
reduction”, or “redox” reactions. The energy 
your brain uses to process the information 
you are now reading comes from oxidation of 
organic carbon – carbon originally reduced by 
photosynthesis in plants. To fully specify the 
state of a system, we must specify its “redox” 
state. We treat redox reactions in the final 
section of this chapter.

Though Chapter 4 will add a few more tools 
to our geochemical toolbox, and treat a number 
of advanced topics in thermodynamics, it is 

Geochemistry, First Edition. William M. White.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.

* The naturally occurring minerals of varying composition are referred to as plagioclase rather than anorthite, 
olivine rather than forsterite, clinopyroxene rather than diopside, and orthopyroxene rather than enstatite.



62 GEOCHEMISTRY

scale. This is not necessarily the case with 
components, as we shall see. The term species 
is less useful for solids, although it is some-
times applied to the pure end-members of 
solid solutions and to pure minerals.

3.2.1.3 Component

In contrast to a species, a component need not 
be a real chemical entity; rather it is simply 
an algebraic term in a chemical reaction. The 
minimum number of components* of a system 
is rigidly defined as the minimum number of 
independently variable entities necessary to 
describe the composition of each and every 
phase of a system. Unlike species and phases, 
components may be defined in any convenient 
manner: what the components of your system 
are and how many there are depend upon 
your interest and upon the level of complexity 
you will be dealing with. Consider our 
aragonite–calcite fossil. If the only reaction 
occurring in our system (the fossil) is the 
transformation of aragonite to calcite, one 
component, CaCO3, is adequate to describe 
the composition of both phases. If, however, 
we are also interested in the precipitation of 
calcium carbonate from water, we might have 
to consider CaCO3 as consisting of two com-
ponents: Ca2+ and CO3

2−.
There is a rule to determine the minimum 

number of components in a system once you 
decide what your interest in the system is; the 
hard part is often determining your interest. 
The rule is:

 c n r= −  (3.1)

where n is the number of species, and r is the 
number of independent chemical reactions 
possible between these species. Essentially, 
this equation simply states that if a chemical 
species can be expressed as the algebraic sum 
of other components, we need not include 
that species among our minimum set of com-
ponents. Let’s try the rule on the species we 
listed earlier for water. We have six species: 
H2O, H2CO3, HCO3

−, CO3
2−, H+, and OH−. We 

can write three reactions relating them:

HCO H CO3 3
2− + −= +

designed to be optional. With completion of 
this chapter, you will have a sufficient thermo-
dynamic background to deal with a wide range 
of phenomena in the Earth, and most of the 
topics in the remainder of this book.

3.2 PHASE EQUILIBRIA

3.2.1 Some definitions

3.2.1.1 Phase

Phases are real substances that are homogene-
ous, physically distinct, and (in principle) 
mechanically separable. For example, the 
phases in a rock are the minerals present. 
Amorphous substances are also phases, so 
glass or opal would be phases. The sugar that 
won’t dissolve in your ice tea is a distinct 
phase from the tea, but the dissolved sugar is 
not. Phase is not synonymous with com-
pound. Phases need not be chemically dis-
tinct: a glass of ice water has two distinct 
phases: water and ice. Many solid compounds 
can exist as more than one phase. Nor need 
they be compositionally unique: plagioclase, 
clinopyroxene, olivine, and so on, are all 
phases even though their composition can 
vary. Thus a fossil in which the aragonite 
(CaCO3) is partially retrograded into calcite 
(also CaCO3) consists of two phases. Systems, 
and reactions occurring within them, consist-
ing of a single phase are referred to as homog-
enous; those systems consisting of multiple 
phases, and the reactions occurring within 
them, are referred to as heterogeneous.

3.2.1.2 Species

Species is somewhat more difficult to define 
than either phase or component. A species is 
a chemical entity, generally an element or 
compound (which may or may not be 
ionized). The term is most useful in the 
context of gases and liquids. A single liquid 
phase, such as an aqueous solution, may 
contain a number of species. For example, 
H2O, H2CO3, HCO3

−, CO3
2−, H+, and OH− are 

all species commonly present in natural 
waters. The term species is generally reserved 
for an entity that actually exists, such as a 
molecule, ion, or solid, on a microscopic 

* Caution: some books use the term number of components as synonymous with minimum number of components.
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we could alternatively define the exchange 
operator KNa–1 (where Na–1 is –1 mol of Na 
ion) and write the equation as:

NaAlSi O KNa KAlSi O3 8 1 3 8+ =−

In addition, we can also write the reaction:

K Na KNa− = −1

Here we have four species and two reactions 
and thus a minimum of only two components. 
You can see that a component is merely an 
algebraic term.

H CO H HCO2 3 3= ++ −

H O H OH2 = ++ −

Equation 3.1 tells us we need 3 = 6 − 3 com-
ponents to describe this system: CO3

2−, H+, 
and OH−. Put another way, we see that car-
bonic acid, bicarbonate, and water can all  
be expressed as algebraic sums of hydrogen, 
hydroxyl, and carbonate ions, so they need 
not be among our minimum set of 
components.

In igneous and metamorphic petrology, 
components are often the major oxides 
(though we may often choose to consider only 
a subset of these). On the other hand, if we 
were concerned with the isotopic equilibra-
tion of minerals with a hydrothermal fluid, 
18O would be considered as a different com-
ponent than 16O.

Perhaps the most straightforward way of 
determining the number of components is a 
graphical approach. If all phases can be rep-
resented on a one-dimensional diagram (that 
is, a straight line representing composition), 
we are dealing with a two-component system. 
For example, consider the hydration of Al2O3 
(corundum) to form boehmite (AlO(OH))  
or gibbsite Al(OH)3. Such a system would 
contain four phases (corundum, boehmite, 
gibbsite, water), but is nevertheless a two-
component system because all phases may be 
represented in one dimension of composition 
space, as shown in Figure 3.1. Because there 
are two polymorphs of gibbsite, one of boeh-
mite, and two other possible phases of water, 
there are nine possible phases in this two-
component system. Clearly, a system may 
have many more phases than components.

Similarly, if a system may be represented  
in two dimensions, it is a three-component 
system. Figure 3.2 is a ternary diagram illus-
trating the system Al2O3–H2O–SiO2. The gra-
phical representation approach reaches its 
practical limit in a four-component system 
because of the difficulty of representing more 
than three dimensions on paper. A four-
component system is a quaternary one, and 
can be represented with a three-dimensional 
quaternary diagram.

It is important to understand that a com-
ponent may or may not have chemical reality. 
For example in the exchange reaction:

NaAlSi O K KAlSi O Na3 8 3 8+ = ++ +

Al2O3 AlO(OH) Al(OH)3 H2O

Figure 3.1 Graphical representation of the 
system Al2O3-H2O.

g,by,n

d,bo

p

w

ka,ha,di,na

c q

H2O

SiO2a,k,sAl2O3

Figure 3.2 Phase diagram for the system 
Al2O3–H2O–SiO2. The lines are called joins 
because they join phases. In addition to the 
end-members, or components, phases 
represented are g: gibbsite, by: bayerite, n: 
norstrandite (all polymorphs of Al(OH)3), d: 
diaspore, bo: boehmite (polymorphs of 
AlO(OH)), a: andalusite, k: kyanite, s: 
sillimanite (all polymorphs of Al2SiO5), ka: 
kaolinite, ha: halloysite, di: dickite, na: nacrite 
(all polymorphs of Al2Si2O5(OH)4), and p: 
pyrophyllite (Al2Si4O10(OH)2). There are also 
six polymorphs of quartz, q (coesite, 
stishovite, tridymite, cristobalite, α-quartz, 
and β-quartz). From Nordstrom and Munoz 
(1986). With permission from John Wiley & 
Sons.



64 GEOCHEMISTRY

at the triple point of water, so the system is 
said to be invariant, and T and P are uniquely 
fixed: there is only one temperature and one 
pressure at which the three phases of water 
can coexist (273.15 K and 0.006 MPa). If only 
one phase is present, for example just liquid 
water, then we need to specify two variables 
to describe completely the system. It does not 
matter which two we pick. We could specify 
molar volume and temperature and from that 
we could deduce pressure. Alternatively, we 
could specify pressure and temperature. There 
is only one possible value for the molar 
volume if temperature and pressure are fixed. 
It is important to remember this applies to 
intensive parameters. To know volume, an 
extensive parameter, we would have to fix  
one additional extensive variable (such as 
mass or number of moles). And again, we 
emphasize that all this applies only to systems 
at equilibrium.

Now consider the hydration of corundum 
to form gibbsite. There are three phases, but 
there need be only two components. If these 
three phases (water, corundum, gibbsite) are 
at equilibrium, we have only one degree of 
freedom (i.e., if we know the temperature at 
which these three phases are in equilibrium, 
the pressure is also fixed).

Rearranging eqn. 3.2, we also can deter-
mine the maximum number of phases that 
can coexist at equilibrium in any system. The 
degrees of freedom cannot be less than zero, 
so for an invariant, one-component system,  
a maximum of three phases can coexist at  
equilibrium. In a univariant one-component 
system, only two phases can coexist. Thus 
sillimanite and kyanite can coexist over a 
range of temperatures, as can kyanite and 
andalusite, but the three phases of Al2SiO5 
coexist only at one unique temperature and 
pressure.

Let’s consider the example of the three-
component system Al2O3–H2O–SiO2 in Figure 
3.2. Although many phases are possible in 
this system, for any given composition of the 
system only three phases can coexist at equi-
librium over a range of temperature and pres-

There is generally some freedom in choos-
ing components. For example, in the ternary 
(i.e., three-component) system SiO2-Mg2SiO4-
MgCaSi2O6, we could choose our components 
to be quartz, diopside, and forsterite, or we 
could choose them to be SiO2, MgO, and 
CaO. Either way, we are dealing with a ternary 
system (which contains MgSiO3 as well as the 
three other phases).

3.2.1.4 Degrees of freedom

The number of degrees of freedom in a system 
is equal to the sum of the number of inde-
pendent intensive variables (generally tem-
perature and pressure) and independent 
concentrations (or activities or chemical 
potentials) of components in phases that must 
be fixed to define uniquely the state of the 
system. A system that has no degrees of 
freedom (i.e., is uniquely fixed) is said to be 
invariant, one that has one degree of freedom 
is univariant, and so on. Thus in a univariant 
system, for example, we need specify the value 
of only one variable, for example, tempera-
ture or the concentration of one component 
in one phase, and the value of pressure and 
all other concentrations are then fixed and 
can be calculated (assuming the system is at 
equilibrium).

3.2.2 The Gibbs phase rule

The Gibbs* phase rule is a rule for determin-
ing the degrees of freedom, or variance, of a 
system at equilibrium. The rule is:

 f c= − +φ 2  (3.2)

where f is the degrees of freedom, c is the 
number of components, and ϕ is the number 
of phases. The mathematical analogy is that 
the degrees of freedom are equal to the number 
of variables minus the number of equations 
relating those variables. For example, in a 
system consisting of just H2O, if two phases 
coexist, for example, water and steam, then 
the system is univariant. Three phases coexist 

* J. Williard Gibbs (1839–1903) is viewed by many as the father of thermodynamics. He received the first 
doctorate in engineering granted in the US, from Yale in 1858. He was Professor of Mathematical Physics at Yale 
from 1871 until his death. He also helped to found statistical mechanics. The importance of his work was not 
widely recognized by his American colleagues, though it was in Europe, until well after his death.
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Example 3.1 The graphite-diamond transition

At 25°C the graphite-diamond transition occurs at 1600 MPa (megapascals, 1 MPa = 10 b). Using 
the standard state (298 K, 0.1 MPa) data below, predict the pressure at which the transformation 
occurs when temperature is 1000°C.

Answer: We can use the Clapeyron equation to determine the slope of the phase boundary. Then, 
assuming that ΔS and ΔV are independent of temperature, we can extrapolate this slope to 1000°C 
to find the pressure of the phase transition at that temperature.

First, we calculate the volumes of graphite and diamond at 1600 MPa as (eqn. 2.140):

 V V P= ° −( )1 β∆  (3.5)

where ΔP is the difference between the pressure of interest (1600 MPa in this case) and the reference 
pressure (0.1 MPa). Doing so, we find the molar volumes to be 5.037 for graphite and 3.405 for 
diamond, so ΔVr is −1.6325 cc/mol. The next step will be to calculate ΔS at 1600 MPa. The pressure 
dependence of entropy is given by equation 2.148: ∂S/∂P)T = −αV. Thus to determine the effect of 
pressure we integrate:

Graphite Diamond

a (K−1) 1.05 × 10−05 7.50 × 10−06

b (MPa−1) 3.08 × 10−05 2.27 × 10−06

S° (J/K-mol) 5.74 2.38
V (cm3/mol) 5.2982 3.417

(Continued)

sure. Four phases (e.g., a, k, s, and p) can 
coexist only along a one-dimensional line or 
curve in P-T space. Such points are called 
univariant lines (or curves). Five phases can 
coexist at invariant points at which both tem-
perature and pressure are uniquely fixed. 
Turning this around, if we found a metamor-
phic rock whose composition fell within the 
Al2O3–H2O–SiO2 system, and if the rock con-
tained five phases, it would be possible to 
determine uniquely the temperature and pres-
sure at which the rock equilibrated.

3.2.3 The Clapeyron equation

A common problem in geochemistry is to 
know how a phase boundary varies in P-T 
space, for example, how a melting tempera-
ture will vary with pressure. At a phase 
boundary, two phases must be in equilibrium, 
so ΔG must be 0 for the reaction Phase 
1 ! Phase 2. The phase boundary therefore 
describes the condition:

 d G V dP S dTr r r( )∆ ∆ ∆= − = 0

Thus the slope of a phase boundary on a 
temperature-pressure diagram is:

 
dT
dP

V
S

r

r

= ∆
∆

 (3.3)

where ΔVr and ΔSr are the volume and 
entropy changes associated with the reaction. 
Equation 3.3 is known as the Clausius-
Clapeyron equation, or simply the Clapeyron 
equation. Because ΔVr and ΔSr are functions 
of temperature and pressure, this is, of 
course, only an instantaneous slope. For 
many reactions, however, particularly those 
involving only solids, the temperature and 
pressure dependencies of ΔVr and ΔSr will 
be small and the Clapeyron slope will be 
relatively constant over a large T and P range 
(see Example 3.1).

Because ΔS = ΔH/T, the Clapeyron equa-
tion may be equivalently written as:

 
dT
dP

T V
H

r

r

= ∆
∆

 (3.4)
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(We use Sp to indicate the entropy at the pressure of interest and S° the entropy at the reference 
pressure.) We need to express V as a function of pressure, so we substitute eqn. 3.5 into 3.6:
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 (3.7)

The reference pressure, Pref, is negligible compared with P1 (0.1 MPa vs 1600 PMa), so that this 
simplifies to:

 S S V P PP = ° − −





α β∆
2 1

2

For graphite, Sp is 5.66 J/K-mol, for diamond it is 2.34 J/K-mol, so ΔSr at 1600 MPa is 
−3.32 J-K−1-mol−1.

The Clapeyron slope is therefore:

 ∆
∆

S
V

= −
−

= − −3 322
1 63

2 035
.
.

. JK cm1 3

One distinct advantage of the SI units is that cm3 = J/MPa, so the above units are equivalent to 
K/MPa. From this, the pressure of the phase change at 1000°C can be calculated as:

 P P T
S
V1000 293

1600 975 2 035 3584

= + ×

= + × =

∆ ∆
∆

. MPa

The Clapeyron slope we calculated (solid line) is compared with the experimentally determined phase 
boundary in Figure 3.3. Our calculated phase boundary is linear whereas the experimental one is 
not. The curved nature of the observed phase boundary indicates ΔV and ΔS are pressure- and 
temperature-dependent. This is indeed the case, particularly for graphite. A more accurate estimate 
of the volume change requires that β be expressed as a function of pressure.
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Figure 3.3 Comparison of the graphite-diamond phase boundary calculated from 
thermodynamic data and the Clapeyron slope (solid line) with the experimentally observed 
phase boundary (dashed line).
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solution has a lower Gibbs free energy than 
the mechanical mixture. On the other hand, 
vinegar will never dissolve in oil at 1 atm and 
25°C because the Gibbs free energy of that 
solution is greater than that of the mechanical 
mixture.

3.3.1 Raoult’s Law

Working with solutions of ethylene bromide 
and propylene bromide, Raoult* noticed that 
the vapor pressures of the components in a 
solution were proportional to the mole frac-
tions of those components:

 P X Pi i i
o=  (3.8)

where Pi is the vapor pressure of component 
i above the solution, Xi is the mole fraction 
of i in solution, and Pi

o is the vapor pressure 
of pure i under standard conditions. Assum-
ing the partial pressures are additive and the 
sum of all the partial pressures is equal to the 
total gas pressure (ΣPi = Ptotal):

 P X Pi i total=  (3.9)

Thus partial pressures are proportional to 
their mole fractions. This is the definition of 
the partial pressure of the ith gas in a mixture.

Raoult’s Law holds only for ideal solutions, 
that is, substances where there are no inter-
molecular forces. It also holds to a good 
approximation where the forces between like 
molecules are the same as between different 
molecules. The two components Raoult was 
working with were very similar chemically, so 
that this condition held and the solution was 
nearly ideal. As you might guess, not all solu-
tions are ideal. Figure 3.4 shows the varia-
tions of partial pressures above a mixture of 
water and dioxane. Significant deviations 
from Raoult’s Law are the rule except where 
Xi approaches 1.

3.3.2 Henry’s Law

Another useful approximation occurs when 
Xi approaches 0. In this case, the partial 

Slopes of phase boundaries in P-T space are 
generally positive, implying that the phases 
with the largest volumes also generally have 
the largest entropies (for reasons that become 
clear from a statistical mechanical treatment). 
This is particularly true of solid–liquid phase 
boundaries, although there is one very impor-
tant exception: water. How do we determine 
the pressure and temperature dependence  
of ΔVr and why is ΔVr relatively T- and 
P-independent in solids?

We should emphasize that application of 
the Clapeyron equation is not limited to reac-
tions between two phases in a one-component 
system, but may be applied to any univariant 
reaction.

3.3 SOLUTIONS

Solutions are defined as homogenous phases 
produced by dissolving one or more sub-
stances in another substance. In geochemistry 
we are often confronted by solutions: as gases, 
liquids, and solids. Free energy depends not 
only upon T and P, but also upon composi-
tion. In thermodynamics it is generally most 
convenient to express compositions in terms 
of mole fractions, Xi, the number of moles of 
i divided by the total moles in the substance 
(moles are weight divided by atomic or molec-
ular weight). The sum of all the Xi fractions 
must, of course, total to 1.

Solutions are distinct from purely mechani-
cal mixtures. For example, salad dressing (oil 
and vinegar) is not a solution. Similarly, we 
can grind anorthite (CaAl2Si2O8) and albite 
(NaAlSi3O8) crystals into a fine powder and 
mix them, but the result is not a plagioclase 
solid solution. The Gibbs free energy of 
mechanical mixtures is simply the sum of the 
free energy of the components. If, however, 
we heated the anorthite-albite mixture to a 
sufficiently high temperature that the kinetic 
barriers were overcome, there would be a 
reordering of atoms and the creation of a true 
solution. Because this reordering is a sponta-
neous chemical reaction, there must be a 
decrease in the Gibbs free energy associated 
with it. This solution would be stable at 1 atm 
and 25°C. Thus we can conclude that the 

* Francois Marie Raoult (1830–1901), French chemist, chaired the Chemistry Department at the Université de 
Grenoble from 1867 until his death.
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(we will use small letters to denote partial 
molar quantities; the superscript refers to the 
phase and the subscript refers to the compo-
nent). The English interpretation of eqn. 3.11 
is that the partial molar volume of component 
i in phase ϕ tells us how the volume of phase 
ϕ will vary with an infinitesimal addition of 
component i, if all other variables are held 
constant. For example, the partial molar 
volume of Na in an aqueous solution such as 
seawater would tell us how the volume of that 
solution would change for an infinitesimal 
addition of Na. In this case i would refer to 
the Na component and ϕ would refer to the 
aqueous solution phase. In Table 2.2, we see 
that the molar volumes of the albite and 
anorthite end-members of the plagioclase 
solid solution are different. We could define 
vAb

pl  as the partial molar volume of albite in 
plagioclase, which would tell us how the 
volume of plagioclase would vary for an infin-
itesimal addition of albite. (In this example, 
we have chosen our component as albite 
rather than Na. While we could have chosen 
Na, the choice of albite simplifies matters 
because the replacement of Na with Ca is 
accompanied by the replacement of Si by Al.)

The second expression in eqn. 3.11 says 
that the volume of a phase is the sum of the 
partial molar volumes of the components 
times the number of moles of each component 
present. Thus the volume of plagioclase would 
be the sum of the partial molar volumes of 
the albite and anorthite components weighted 
by the number of moles of each.

Another example might be a solution of 
water and ethanol. The variation of the partial 
molar volumes of water and ethanol in a 
binary solution is illustrated in Figure 3.5. 
This system illustrates very clearly why the 
qualification “for an infinitesimal addition” is 
always added: the value of a partial molar 
quantity of a component may vary with the 
amount of that component present.

Equation 3.11 can be generalized to all 
partial molar quantities and also expresses an 

pressures are not equal to the mole fraction 
times the vapor pressure of the pure sub-
stance, but they do vary linearly with Xi. This 
behavior follows Henry’s Law,* which is:

 P X Xi i i= h for 1"  (3.10)

where h is known as the Henry’s Law 
constant.

3.4 CHEMICAL POTENTIAL

3.4.1 Partial molar quantities

Free energy and other thermodynamic prop-
erties are dependent on composition. We need 
a way of expressing this dependence. For any 
extensive property of the system, such as 
volume, entropy, energy, or free energy, we 
can define a partial molar value, which 
expresses how that property will depend on 
changes in amount of one component. For 
example, we define the partial molar volume 
of component i in phase ϕ as:
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Figure 3.4 Vapor pressure of water and 
dioxane in a water-dioxane mixture showing 
deviations from ideal mixing. Shaded areas 
are areas where Raoult’s Law (dashed lines). 
Henry’s Law slopes are shown as dot-dashed 
lines. After Nordstrom and Munoz (1986). 
With permission from John Wiley & Sons.

* Named for English chemist William Henry (1775–1836), who formulated it.
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The chemical potential thus tells us how the 
Gibbs free energy will vary with the number 
of moles, ni, of component i holding tempera-
ture, pressure, and the number of moles of all 
other components constant. We said that the 
Gibbs free energy of a system is a measure of 
the capacity of the system to do chemical 
work. Thus the chemical potential of compo-
nent i is the amount by which this capacity to 
do chemical work is changed for an infinitesi-
mal addition of component i at constant tem-
perature and pressure. In a NiCd battery 
(common rechargeable batteries), for example, 
the chemical potential of Ni in the battery 
(our system) is a measure of the capacity of 
the battery to provide electrical energy per 
mole of additional Ni for an infinitesimal 
addition.

The total Gibbs free energy of a system will 
depend upon composition as well as on tem-
perature and pressure. The equations we 
introduced for Gibbs free energy in Chapter 
2 fully describe the Gibbs free energy only for 
single component systems or systems contain-
ing only pure phases. The Gibbs free energy 
change of a phase of variable composition is 
fully expressed as:

 dG VdP SdT dni i

i

= − + ∑µ  (3.14)

3.4.3 Properties of the chemical potential

We now want to consider two important 
properties of the chemical potential. To illus-
trate these properties, consider a simple two-
phase system in which an infinitesimal amount 
of component i is transferred from phase β to 
phase α, under conditions where T, P, and the 
amount of other components is held constant 
in each phase. One example of such a reaction 
would be the transfer of Pb from a hydrother-
mal solution to a sulfide mineral phase. The 
chemical potential expresses the change in 
Gibbs free energy under these conditions:

dG dG dG dn dni i i i= + = +α β α α β βµ µ  (3.15)

since we are holding everything else constant, 
atoms gained by α must be lost by β, so 
− =dn dni i

α β and:

important property of partial molar quanti-
ties: an extensive variable of a system or phase 
is the sum of its partial molar quantities for 
each component in the system. In our earlier 
example, this means that the volume of pla-
gioclase is the sum of the partial molar volume 
of the albite and anorthite components.

Generally, we find it more convenient to 
convert extensive properties to intensive prop-
erties by dividing by the total number of 
moles in the system, Σn. Dividing both sides 
of eqn. 3.11 by Σn we have:

 V X vi i

i

= ∑  (3.12)

This equation says that the molar volume  
of a substance is the sum of the partial  
molar volumes of its components times their 
mole fractions. For a pure phase, the partial 
molar volume equals the molar volume since 
X = 1.

3.4.2 Definition of chemical potential and 
relationship to Gibbs free energy

We define µ as the chemical potential, which 
is simply the partial molar Gibbs free energy:
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Figure 3.5 Variation of the partial molar 
volumes of water and ethanol as a function of 
the mole fraction of ethanol in a binary 
solution. This figure also illustrates the 
behavior of a very non-ideal solution. After 
Nordstrom and Munoz (1986). With 
permission from John Wiley & Sons.
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It can be further shown (but we won’t) that:
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3.4.4 The Gibbs-Duhem relation

Since µ is the partial molar Gibbs free energy, 
the Gibbs free energy of a system is the  
sum of the chemical potentials of each 
component:
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µ  (3.19)

The differential form of this equation (which 
we get simply by applying the chain rule) is:

 dG n d dni i

i

i i

i

= +∑ ∑µ µ  (3.20)

Equating this with eqn. 3.14, we obtain:

 n d dn VdP SdT dni i

i

i i

i

i i

i

µ µ µ∑ ∑ ∑+ = − +  

(3.21)

Rearranging, we obtain the Gibbs-Duhem 
relation:

 VdP SdT n di i

i

− − =∑ µ 0  (3.22)

The Gibbs-Duhem equation describes the 
relationship between simultaneous changes in 
pressure, temperature and composition in a 
single-phase system. In a closed system at 
equilibrium, net changes in chemical potential 
will occur only as a result of changes in tem-
perature or pressure. At constant temperature 
and pressure, there can be no net change in 
chemical potential at equilibrium:

 n di i

i

µ∑ = 0  (3.23)

This equation further tells us that the chemi-
cal potentials do not vary independently, but 
change in a related way. In a closed system, 
only one chemical potential can vary inde-

 dG dni i i= −( )µ µα β  (3.16)

At equilibrium, dG = 0, and therefore

 µ µα β
i i=  (3.17)

Equation 3.17 reflects a very general and 
very important relationship, namely:

In a system at equilibrium, the chemical 
potential of every component in a phase is 
equal to the chemical potential of that com-
ponent in every other phase in which that 
component is present.

Equilibrium is the state toward which systems 
will naturally transform. The Gibbs free 
energy is the chemical energy available to fuel 
these transformations. We can regard differ-
ences in chemical potentials as the forces 
driving transfer of components between 
phases. In this sense, the chemical potential is 
similar to other forms of potential energy, 
such as gravitational or electromagnetic. 
Physical systems spontaneously transform so 
as to minimize potential energy. Thus for 
example, water on the surface of the Earth 
will move to a point where its gravitational 
potential energy is minimized – downhill. Just 
as gravitational potential energy drives this 
motion, the chemical potential drives chemi-
cal reactions, and just as water will come to 
rest when gravitational energy is minimized, 
chemical reactions will cease when chemical 
potential is minimized. So in our earlier 
example, the spontaneous transfer of Pb 
between a hydrothermal solution and a sulfide 
phase will occur until the chemical potentials 
of Pb in the solution and in the sulfide are 
equal. At this point, there is no further energy 
available to drive the transfer.

We defined the chemical potential in terms 
of the Gibbs free energy. However, in his orig-
inal work, Gibbs based the chemical potential 
on the internal energy of the system. As it 
turns out, however, the quantities are the 
same:
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