基于 mapgis 的网格化数据批量精确提取

陈载林1,黄临平1,陈玉梁2

(1. 东华理工大学核工程学院,江西 抚州 344000; 2. 核工业二八 O 研究所,四川 广汉 618300)

摘 要:网格化数据批量精确提取一直是困扰我们的问题,在使用 mapgis 的过程中,发现 DTM 分析和高程库管理模块的联合实用可以解决我们的问题,取得了实际效果。

关键词:mapgis;网格化数据;提取

中图分类号:F406.14 文献标识码:B 文章编号:1004-5716(2009)02-0202-02

1 概述

就地球物理勘探来说,必然和各种数据打交道,来自地震的,重力的,磁法的,电法的,而最终成果大多用surfer形成等值线图,很多时候需要查询提取某些点的网格化数据,以便对其数据进行分析,比如读取某给定点的高程,不需要手工读取,而只需要给定点的坐标,计算机自动就能给出高程,特别是批量导出,还有了解某些点的重力异常,磁力异常的精确值,然而 surfer 满足不了的要求,成为为一堆繁琐的数据而头疼,在苦苦寻觅中,发现了 mapgis,利用它可以解决我们的问题,为数据的分析,报告的编写带来了方便,写此文以供分享经验。

2 网格化数据批量精确提取

2.1 mapgis 简介

Mapgis 是中国地质大学(武汉)信息工程学院以吴信才教授为首的科研小组,在十几年数字制图软件开发的基础上,开展了 GIS 软件开发以及 GIS 应用系统的研究工作推出一个完善的地理信息系统原型,广泛用于地质、矿产、地理、测绘、水利、石油、煤炭、铁道、交通、城建、规划及土地管理等专业。

2.2 实现平台

以 mapgis6.7 为平台,实现了数据的提取。Mapgis 主菜单下面有图形处理,库管理,空间分析,图像处理和实用服务五大模块。我们在网格化数据的精确提取中只需要空间分析模块下面的 DTM 分析子模块和和图像处理模块下面的高程库子模块就够了。

2.3 高程坐标的批量计算

现在用 mapgis 中最常见的高程点批量计算来引出 我们需要的网格数据点批量计算。

(1) 打开 mapgis6. 7 主菜单下面的 DTM 分析;

- (2) 文件→打开数据文件→线数据文件→××地 形. WL;
 - (3) 处理点线→线数据高程点提取;
 - (4) Grd 模型→离散数据网格化。

通过上面四步就可以形成××. Grd 文件。

- (1) 打开图形处理下面的高程库管理模块;
- (2) 文件→打开高程文件→刚才形成的××. Grd 文件;
- (3) 数据编辑→高程点查询或者高程点批量计算。 在以上的步骤完成了后,就可以得到我们需要的数据 了。见图 1。

2.4 网格数据点批量计算

在高程坐标的批量计算得以实现后,就可以根据以上步骤来进行我们需要的网格化数据提取了。在这里,只需要对给定的数据经行 Grd 模型下面的离散数据网格化就可以,操作类似与 surfer。然后用高程库管理模块打开,见图 2。

用图 2 软件中的数据编辑→高程点查询或者高程 点批量计算,导入需要计算的异常坐标文件(*.txt)后 就得到了结果。

3 结论

通过总结经验,发现 mapgis 给我们带来了方便,解决了我们棘手的问题,在实际操作中,最总要的两步就是形成网格化文件和待计算的坐标文件的形成。

参考文献:

- [1] 吴信才. mapgis 地理信息系统[M]. 北京:电子工业出版 社,2004
- [2] 李志林. 数据高程模型[M]. 武汉, 武汉测绘科技大学出版社,2000.

. 51a	.txt - 记事本			
文件(2)	(編辑·E) 格式·(D) 査	潘(Y) 帮助(H)		
1	12013.480000	62368.110000	301.750847	^
2	12912.130000	62369.950000	293.528180	
3	12011.470000	62371.780000	285.582845	
4	12011.040000	62373.530000	278.000098	
5	12010.700000	62375.450000	269.173315	
ó	12009.640000	62377.290000	258.588752	
7	12009.470000	62379.120000	253.575596	
8	12008.730009	62380.960000	247.453518	
9	12008.070000	62382.790000	243.123292	
19	12006.540000	62384.540000	241.635479	
11	12006.800000	62386.460000	243.748654	
12	12004.310000	62388.300000	245.312333	
13	12004.430066	62390.270000	242.270051	
14	12003.270000	62391.830000	238.772869	
15	12003.150000	62393.8 00000	236.473828	
				*

图 1 计算结果

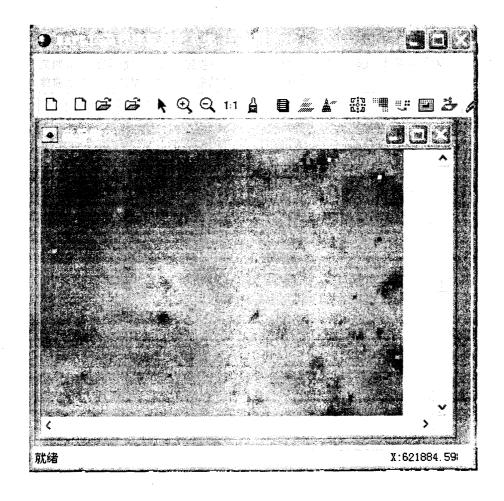


图 2 高程库管理系统